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RESUMO

Processadores soft-core embarcados são a solução usual para lidar com
interconexão de comunicação e dados dentro de FPGAs. Tarefas alta-
mente paralelas implementadas em blocos de IP podem ser facilmente
integradas com processadores durante o fluxo de desenvolvimento de
FPGAs. No entanto, ao desenvolver aplicações espaciais, o projetista
deve considerar os efeitos da radiação ionizante, principalmente sob
a forma de SEUs. Os SEUs podem afetar os elementos de memória
da aplicação, no qual o processador soft-core depende para funcionar
corretamente. A maioria das técnicas de mitigação de SEUs em FPGAs
são baseadas em redundância espacial de hardware. Notavelmente, a
TMR é a mais comum. Quando implementado corretamente, o TMR
pode mascarar erros únicos e detectar erros duplos. Em contrapartida,
uma abordagem de tolerância a falhas muitas vezes negligenciada é
usar redundância temporal. No caso de SEUs, ao reescrever um valor
incorreto dentro de um registrador do processador pode restaurar o
correto funcionamento do sistema. Este processo é feito ao custo do
tempo de processamento em vez de replicação de hardware.
Esta tese apresenta uma técnica de tolerância a falhas, baseada no
conceito de redundância temporal, com pontos de inspeção e recupera-
ção para processadores soft-core. A arquitetura modificada proposta é
voltada para sistemas embarcados para aplicações espaciais, com base
em FPGAs. Nossos resultados experimentais mostram que a técnica CR
é uma alternativa válida para TMR e até DMR, especialmente quando
se considera a área de lógica limitada e o requisito de energia presente
em um satélite. Os resultados têm níveis de confiabilidade comparáveis
às técnicas mais convencionais de tolerância a falhas. Além disso, nossa
abordagem não requer modificações no código-fonte ou compilador do
software.
Palavras-chave: Tolerância a falhas, Checkpoint Recovery, Processa-
dor Soft-core, FPGAs, Efeitos Únicos, Single-Event Upsets.





RESUMO EXPANDIDO

Introdução

Não  há  como  negar  que  os  FPGAs  (do  inglês,  Field
Programmable Gate Arrays) estão aqui para ficar. Eles não são mais
usados  exclusivamente  para  prototipagem  de  ASICs  (do  inglês,
Application  Specific  Integrated  Circuits).  Na  verdade,  eles  são  tão
versáteis  que,  para  até  em  aplicações  mais  conservadoras,  como
satélites,  eles  assumem  cada  vez  mais  o  processamento  de  dados  e
controle de aviônica.  O trabalho de (Gardenyes,  2012) indica que há
uma tendência crescente no emprego de FPGAs em aplicações espaciais.

Os  FPGAs  atuais  oferecem  alta  capacidade  lógica  (para
implementar  um  circuito),  razoáveis  frequências  de  operação  e  uma
grande quantidade de blocos embutidos (como conversores analógico-
digital e processadores de sinais digitais). Diversos fatores contribuíram
para  o  alcance  deste  estágio,  porém a  densidade  de  transistores  dos
Circuitos  Integrados  (Cis)  constitui  um  fator  principal,  por  força  da
miniaturização nos processos de fabricação.

Ao considerar aplicações espaciais, espera-se que futuras missões
adquiram e  processem grandes  quantidades  de  dados.  Além disso,  a
eletrônica embarcada deve ter a capacidade de ser reprogramada após o
lançamento  da  missão  e  enquanto  ainda  estiver  em  operação.
Microprocessadores  tradicionais  e  ASICs  não  podem  atender  a  esse
requisito por completo, razão pela qual surgem os FPGAs como uma
boa  opção.  Além  dos  blocos  de  propriedade  intelectual  (do  inglês,
Intellectual Property Blocks – IPs) personalizados dentro do FPGA, é
comum o  uso  de  processadores  embarcados  para  lidar  com  dados  e
comunicações. Toda essa integração pode comprometer a confiabilidade
geral do sistema. Dadas estas circunstâncias, encontrar um compromisso
entre a capacidade de processamento e o nível de confiabilidade contra
falhas do processador é importante do ponto de vista de pesquisa.

Levando  em  conta  o  ambiente  hostil  que  os  satélites  estão
expostos,  eventos  externos  podem  causar  o  mau  funcionamento  do
sistema.  Interferência  eletromagnética  e  radiação  são  alguns  dos
responsáveis  pelos efeitos que os circuitos estão suscetíveis.  Um dos
problemas mais comuns é conhecido como efeitos de evento único (do
inglês,  Single  Event  Effect –  SEE),  os  quais  podem  causar  falhas
temporárias  ou  permanentes  em  um  sistema,  como  por  exemplo,
invalidando-o  e  ocasionando  o  término  prematuro  de  uma  missão
espacial.



Para  atingir  confiabilidade  em nível  de  missão,  a  tolerância  a
falhas deve ser considerada em todo o desenvolvimento do sistema, ou
seja, do  layout do CI até a implementação do software. No nível mais
baixo de abstração, os FPGAs endurecidos contra radiação (conhecidos
como  rad-hard)  podem lidar  com os  efeitos  da radiação  no circuito,
garantindo condições mínimas para o sistema funcionar.

Entretanto,  para  alguns programas espaciais,  como no caso  do
Brasil,  o  processo  de  aquisição  de  componentes  endurecidos  é
controlado  por  agências  governamentais,  além  de  custar
significativamente mais do que os componentes de prateleira (do inglês,
Commercial  Off-The-Shelf  –  COTS)  tradicionais.  Se  assumirmos  um
FPGA COTS não endurecido, o próximo nível de abstração do sistema
deve mitigar possíveis  erros (ou seja,  SEEs)  do hardware subjacente.
Assim, uma forte motivação é a possibilidade de implementar sistemas
tolerantes a falhas com o uso de FPGAs COTS.

Nesse sentido, o processador soft-core LEON3 vem sendo usado
em  algumas  missões  espaciais.  Ainda,  dado  o  interesse  do  Instituto
Nacional de Pesquisas Espaciais (INPE) do Brasil em migrar do ERC32
sem ter que reprojetar todo o código, um processador soft-core LEON3,
com  tolerância  a  falhas,  constituiria  uma  substituição  válida  para  o
ERC32.

Por  todo  o  exposto,  esta  tese  apresenta  uma  arquitetura
microprocessada  com  tolerância  a  falhas,  destinada  a  processadores
soft-core que podem ser utilizados em aplicações espaciais embarcadas.

Objetivos

As interconexões de comunicação e dados dentro dos FPGAs são
frequentemente tratadas com o uso de processadores  soft-core. Tarefas
altamente paralelas implementadas em blocos IP podem ser facilmente
integradas com processadores durante o fluxo de desenvolvimento de
FPGA. No entanto,  ao desenvolver aplicações baseadas no espaço,  o
projetista de sistemas embarcados também deve considerar os efeitos da
radiação ionizante, principalmente na forma de SEUs (do inglês, Single
Event Upset – SEU). Por sua vez, os SEUs podem afetar os elementos
de memória (registradores e flip-flops) do usuário e a memória principal,
ambos necessários para o adequado funcionamento do processador.

A maioria  das  técnicas  para  mitigação  de SEUs em FPGAs é
baseada  em  redundância  espacial  de  hardware.  Notavelmente,  a
Redundância Modular Tripla (do inglês,  Tiple Modular Redundancy –
TMR)  é a  mais  comum e,  quando implementada  corretamente,  pode
mascarar erros únicos e detectar erros duplos. Contudo, dependendo do



nível  de  implementação  no  processador,  pode  ser  difícil  recuperar  a
unidade defeituosa do TMR.

Uma  abordagem  de  tolerância  a  falhas  frequentemente
negligenciada no escopo de processadores é a redundância temporal. No
caso de SEUs, o processo de reescrever um valor incorreto dentro de um
registrador do processador pode restaurar o funcionamento do sistema.
Este processo é feito ao custo de tempo de processamento, em vez de
replicar hardware. 

De uma forma geral, a principal contribuição desta tese é uma
técnica  de  tolerância  a  falhas,  baseada  no  conceito  de  redundância
temporal,  com  pontos  de  verificação  e  recuperação  (do  inglês,
Checkpoint and Recovery – CR) voltados para processadores soft-core.
A arquitetura modificada proposta não exige a refatoração do código
fonte  usado  no  processador  original,  destinando-se  a  sistemas
embarcados para aplicações espaciais, baseadas em FPGAs.

Ademais, a pesquisa tem como foco demonstrar que a técnica de
CR é uma alternativa válida para TMR e até mesmo para a redundância
modular dupla (do inglês,  Dual Modular Redundancy – DMR). Essas
contribuições  são  especialmente  importantes  quando  lidamos  com
restrições determinantes para aplicações espaciais: área lógica limitada e
baixo consumo de energia. Todas essas restrições, no entanto, devem
estar aliadas à níveis mínimos de confiabilidade.

Por fim, o desenvolvimento de técnicas de tolerância a falhas e
recursos  humanos  especializados  são  indispensáveis  para  garantir
soberania e independência ao programa espacial brasileiro.

Metodologia

A  técnica  de  CR funciona  salvando  os  pontos  de  verificação
considerados seguros durante a execução de um processador.  Sempre
que um erro é detectado, é executada uma reversão para o último estado
seguro conhecido, ou seja, uma recuperação. Assim, se o SEU ocorre
em um elemento de memória do circuito e, se o elemento é sobrescrito
com  o  valor  correto  após  a  identificação  do  SEU,  o  erro  pode  ser
corrigido.

O modelo de falha assumido e que está sendo mitigado é o SEE,
mais precisamente seu subtipo SEU. A literatura mostra que o SEU é a
falha predominante quando considerados processadores. Para a técnica
de CR, a granularidade dos pontos de verificação (checkpoints) precisa
ser levada em conta, uma vez que introduz sobrecusto na execução do
processador. Utilizamos a métrica que, após cada operação de escrita na



memória  principal,  o  estado  pode ser  salvo,  de forma semelhante  ao
trabalho de (Violante et al., 2011).

Uma vez que estamos lidando com SEUs, a memória principal do
sistema  é  vital  para  mantê-lo  funcionando.  Como  o  programa  é
executado na memória principal, se esta apresentar erros, o processador
pode interpretar equivocadamente as  instruções.  Para essa hipótese,  a
memória principal é considerada externa e protegida por uma técnica de
detecção  e  correção  de  erros.  Além  disso,  as  memórias  cache  são
desabilitadas  por  dois  motivos:  em  razão  de  representarem  áreas
adicionais  suscetíveis  a  SEUs e  por  interferirem na sincronização do
processador, uma vez que usamos escritas na memória principal como
pontos de referência para criação dos checkpoints.

Como qualquer outra técnica de tolerância a falhas, existem dois
passos necessários para a sua implementação (detecção e correção do
erro). A pesquisa propõe o uso da técnica de CR para detectar erros,
através da execução repetida de cada fatia de instruções (compreendida
entre  dois  pontos de verificação),  além de uma terceira  execução,  se
necessária,  para  corrigir  um  erro  detectado.  Não  obstante,  outros
esquemas  de  detecção  de  erros  são  implementados  para  fins  de
comparação.

O LEON3 é o processador escolhido como sistema alvo deste
trabalho, haja vista a sua significativa aceitação no escopo de aplicações
espaciais. Finalmente, é importante mencionar que não há modificações
fora do código VHDL do LEON3, o que significa dizer que o mesmo
código fonte de software, compilado para o LEON3 original, pode ser
executado perfeitamente em nossa arquitetura. A única diferença reside
na forma como as instruções serão executadas e o sistema recuperado
(no caso de um erro).

Resultados e Discussão

Para realizar nossos testes, o processador LEON3 foi simulado na
ferramenta Modelsim. Uma campanha de injeção de falhas, baseada no
modelo  de  falha  única,  foi  executada  usando um conjunto  de quatro
programas:  basic, bubble sort, NMEA e hamming.  É importante notar
que não foi utilizado um programa de teste mais clássico (como dhry,
stanford ou whetstone), pois o tempo de simulação se torna proibitivo.

Quatro arquiteturas foram consideradas para comparação, quais
sejam,  original,  TMR,  Flow-control  (DMR) e  Time-redundant  (TR).
Para as arquiteturas TMR e DMR, a taxa de execução sem falhas foi
equivalente, na ordem de 79%, o que significa que a falha está latente ou
não se manifestou. A taxa de falhas do original é ligeiramente inferior



aos  valores  de  detecção  nas  abordagens  TMR  e  DMR.  Isso  ocorre
porque um erro detectado nem sempre se torna uma falha. A abordagem
TR mostra a maior porcentagem de resultados corretos,  na ordem de
95%. Isso se deve à reexecução do segmento de código, pois a falha
injetada pode ser sobrescrita antes mesmo de se manifestar durante a
execução do programa.

As taxas de correção para o TMR, devido ao uso do modelo de
falha  única,  são  sempre  de  100%  (para  falhas  detectadas).  Na
abordagem TR, a média de erros corrigidos está perto da marca de 98%,
enquanto  que  a  média  do  DMR fica  ligeiramente  acima  de  63%.  O
principal problema com o DMR, em nossos testes, é a recuperação dos
dois processadores corretamente. As médias de correção, considerando
detecção e correção, são 92% e 95% para as abordagens DMR e TR,
respectivamente. Para o TR, os 5% de falhas pode ser atenuado com
técnicas adicionais em sinais internos específicos do LEON3.

Como comparação final, o custo total das técnicas foi calculado
com base nos dados de taxa de detecção/correção e sobrecusto de tempo,
área  e  potência.  Nossos  números  mostram  que  a  abordagem  TR  é
comparável  com  a  técnica  de  DMR,  apresentando  melhor  fator
detecção  recuperação∗ .  Em  relação  à  técnica  de  TMR,  sua  maior
desvantagem é o fator  área potência∗ , mesmo apresentando  100% de
taxas de detecção e recuperação, sem sobrecusto de tempo.

Considerações Finais

Nesta  tese,  apresentamos  uma  arquitetura  modificada  de
processador tolerante a falhas, usando a técnica de recuperação temporal
CR, com foco em aplicações espaciais baseadas em FPGAs. 

Com nossos resultados experimentais, foi mostrado que a técnica
CR é uma alternativa válida para TMR e DMR. Esta conclusão é válida
também para a limitada área lógica e o consumo de potência, assuntos
de interesse em satélites. As restrições são aliadas a níveis comparáveis
de confiabilidade. Em nossa abordagem, não há necessidade de realizar
modificações no código-fonte ou no compilador do software.

Palavras-chave:  Tolerância  a  falhas,  Checkpoint  Recovery,
Processador Soft-core, FPGAs, Efeitos Únicos, Single-Event Upsets.





ABSTRACT

Embedded soft-core processors are the usual solution to deal with
network and data communications inside Field Programmable Gate
Arrays (FPGAs). High-parallel tasks implemented in Intellectual Property
(IP)-blocks can be easily integrated with processors during the FPGA

development flow. However, when developing space-based applications,
the designer must consider the effects of ionizing radiation, mainly
in the form of Single-Event Upsets (SEUs). SEUs can affect user flip-
flops and memory where the soft-core processor relies on to function
properly. The majority of techniques for mitigation of SEUs on FPGAs

are based on hardware spatial-redundancy. Notably, Triple Modular
Redundancy (TMR) is the most common. When implemented correctly,
TMR can mask single-errors and detected-double errors. In contrast, an
often neglected fault-tolerance approach is to use time-redundancy. In
the case of SEUs, when rewriting an erroneous value inside a processor
register can restore the system correctness. This process is done at the
cost of processing time instead of hardware replication.
This thesis presents a fault-tolerance technique, based on the concept
of temporal redundancy, with checkpoints and recovery for soft-core
processors. The proposed modified architecture is aimed at embedded
systems for spatial applications, based on FPGAs. Our experimental
results show that the Checkpoint and Recovery (CR) technique is a
valid alternative to TMR and even Dual Modular Redundancy (DMR),
especially when considering limited logic area and power budget present
on a satellite. The results have comparable levels of reliability to the
more conventional fault-tolerance techniques. Additionally, our approach
does not require modifications to the software source code or compiler.
Keywords: Fault-tolerance, Checkpoint Recovery, Soft-core Processors,
FPGAs, Single-Event Effects, Single-Event Upsets.
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1 INTRODUCTION

There is no denying Field Programmable Gate Arrays (FPGAs)
are here to stay (RODRIGUEZ-ANDINA; VALDES-PENA; MOURE,
2015). They are not used any longer exclusively for prototyping of
Application Specific Integrated Circuits (ASICs) (ALKHAFAJI et al.,
2018). In fact, they are so versatile that, for one of the most conservative
applications — satellites — they have been increasingly taking over the
data processing and avionics control (BOUHALI et al., 2017).

The work of (GARDENYES, 2012) was used to generate the
chart in Fig. 1 that shows a comparison of the use of ASICs, FPGAs,
Microprocessors and Standard ASICs in 11 satellite missions. Except
for two missions (Immarsat 4 and Galileo IOV)1, the amount of FPGAs

out-stands the number of ASICs used. There is a growing trend in
the employment of FPGA on space applications (FRIEND; ARROYO;
HANSEN, 2016).

Today’s FPGAs offer high logic capacity (to implement a circuit),
reasonable operating frequencies and a plethora of embedded hard-blocks
(such as Analog-to-Digital Converters (ADCs) and Digital Signal Pro-
cessors (DSPs)) (EEJournal, 2017). Several factors have contributed to
reach this stage, mainly the Integrated Circuit (IC) transistor density due
to manufacturing process scaling down (TORRENS, 2017). Nonetheless,
ASICs have their place on the market, especially on high-volume and
high-performance applications such as SAMPA Chip (BARBOZA et al.,
2016).

When considering space applications, future satellite missions
are expected to acquire and process large amounts of data (NORTON
et al., 2009). Additionally, onboard electronics are required to be re-
programmable after the mission launch and even further, while still
operating. Traditional microprocessors and ASICs cannot fulfill this
requirement entirely, leaving FPGAs as the primary option.

1 Both Immarsat 4 and Galileo IOV are communication satellites, hence the use of
dedicated custom ASICs.
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Figure 1 – Usage of ASIC, FPGA, Microprocessor and Standard ASIC
on Space Missions

Source: (GARDENYES, 2012)

Apart from custom IP2-blocks inside the FPGA, it is common
to have embedded processors (KLETZING et al., 2013; GLEIN, 2014;
WILSON, 2011; GUZMÁN et al., 2011; Aeroflex Gaisler, 2015c) to
handle data and communications. All this integration can compromise
overall system reliability (BERNARDESCHI; CASSANO; DOMENICI,
2015; SABENA et al., 2014). Given these circumstances, finding a
compromise between the processing capacity and the level of reliability
against processor failures is important from the research point of view.

Given the harsh environment satellites are exposed to, external
events can cause the system to malfunction. Electromagnetic Interference
(EMI) and radiation account for effects that the circuits are susceptible.
One of the most common problems is known as Single-Event Effect
(SEE)(TANG; OLSSON, 2003; BAUMANN, 2003), which can cause
temporary or permanent failures in a system, even with the potential
to cause invalidation of the entire system, in the form of the premature

2 Intellectual Property (IP)
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termination of a space satellite mission, for example.
To attain mission-level reliability, fault-tolerance must be con-

sidered throughout the entire design of the system, i.e., from IC layout
to software implementation. On the lower level of abstraction, radiation
hardened (rad-hard) FPGAs can deal with the effects of radiation on the
circuit, assuring minimal conditions to the system to function.

But, for some space programs, such as the case in Brazil, the
acquisition process of radiation hardened (rad-hard) components is
controlled by government agencies, besides costing significantly more
than traditional Commercial Off-The-Shelf (COTS) components. For
instance, International Traffic in Arms Regulations (ITAR) (U.S. State
Department, 2018) rules3. If we assume an unhardened COTS FPGA,
the next level of abstraction of the system must mitigate possible errors
(i.e., SEEs) from the underlying hardware. Hence, a strong motivation
is the possibility to implement fault-tolerant systems with the use of
COTS FPGAs.

On that matter, the LEON3 (Aeroflex Gaisler, 2015b) processor
has been used for a few missions on space. And given Brazil’s National
Institute For Space Research (INPE) interest in migrating from the
ERC324 without having to redesign the entire code, a soft-LEON3
processor with fault-tolerance is a good substitution for the rad-hard
ERC32.

Case in point, INPE’s Multi-mission satellite platform (INPE,
2018) On-Board Computer (OBC) employs the ERC32 microprocessor,
and the adoption of a compatible SPARC architecture (i.e., LEON3)
can reduce redesign of the source code from scratch.

For these reasons, this thesis presents a microprocessor archi-
tecture with fault-tolerance, aimed at soft-core processors that can be
used on embedded space applications.

3 Given the two major FPGA companies are based on the USA.
4 ERC32 is a discontinued radiation-tolerant SPARC V7 processor developed for

space applications.
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1.1 OBJECTIVES AND CONTRIBUTION

Network and data communications inside FPGAs are often han-
dled with the use of soft-core processors(KLETZING et al., 2013; GLEIN,
2014; WILSON, 2011; GUZMÁN et al., 2011). High-parallel tasks imple-
mented in IP-blocks can be easily integrated with processors during the
FPGA development flow. However, when developing space-based applica-
tions, the designer of embedded systems must also consider the effects
of ionizing radiation, mainly in the form of Single-Event Upsets (SEUs)
(BERNARDESCHI; CASSANO; DOMENICI, 2015; SABENA et al.,
2014). SEUs can affect user flip-flops and memory where the soft-core
processor relies upon to function properly.

The majority of techniques for mitigation of SEUs in FPGAs

are based on hardware spatial-redundancy. Notably, Triple Modular
Redundancy (TMR) is the most common. When implemented correctly,
TMR can mask single-errors and detected double-errors. But, depending
on the level of implementation for a processor, it can be hard to recover
the faulty unit.

Therefore, an often neglected fault-tolerance approach in the
scope of processors is to use time-redundancy. In the case of SEUs, when
rewriting an erroneous value inside a processor register can restore the
system correctness (KOREN; KRISHNA, 2010). This process is done
at the cost of processing time instead of hardware replication.

In general, this thesis’ main contribution is a fault-tolerance
technique, based on the concept of temporal redundancy, with check-
points and recovery aimed at soft-core processors. The proposed
modified architecture does not require the redesign of code5

and is aimed at embedded systems for space applications, based
on FPGAs.

The research is intended to demonstrate that the Checkpoint
and Recovery (CR) technique is a valid alternative to TMR and even Dual
Modular Redundancy (DMR). This contribution is especially important

5 That is, the same compiled code for the standard processor can be used here in
the modified architecture.
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when dealing with determinant constraints for space applications: limited
logic area and power budget. All of these constraints are allied to
comparable levels of reliability.

Lastly, the development of fault-tolerance techniques and spe-
cialized human resources are necessary to the sovereignty and indepen-
dence of the Brazilian’s space program.

During the doctorate studies, I have worked with space-related
applications. The outcome publications on conferences and journal paper
are presented in Appendix A.

1.2 TEXT ORGANIZATION

The remaining of this document is organized as follows: Chap-
ter 2 gives a background of main concepts related to space-based
applications, and related works are discussed. Chapter 3 shows in
detail the test vehicle and the implementation process for the proposed
technique. Chapter 4 presents how we performed the experiment on
the proposed technique and analyze the results for detection and recov-
ery capability; time, area, and power overhead. Chapter 5 demonstrate
current improvements that can contribute to the the proposed to attain
space-grade qualification. Finally, the Chapter 6 concludes this work
and gives an outlook on future works.





37

2 RELIABILITY IMPROVEMENT STRATEGIES FOR
MICROPROCESSORS

This chapter presents the main problems and definitions asso-
ciated to the space environment when considering embedded electronic
circuits. Also, some of the techniques used in this context are described
with focus on the time redundant approach. And lastly some of related
works are discussed and compared in this scope.

2.1 RADIATION EFFECTS ON ELECTRONICS

The effects of radiation come from particles emitted from a
variety of sources (such as solar rays, etc.), causing degradation of
electronic components, faulty logic, or even damaging the component.
Significant advances were obtained with the alternative of the hardening
of electronic components, at all project levels, which, however, did not
exempt the radiation effect.

Space radiation is generated by particles emitted from various
sources that go beyond the solar system. There are three main sources
of charged particles responsible for faults in electronic components,
namely: Cosmic Rays, Solar Winds and Van Allen’s Belt (VELAZCO;
FOUILLAT; REIS, 2007; BATTEZZATI; STERPONE; VIOLANTE,
2010). Cosmic Rays are formed of highly energetic ion nuclei, these
heavy ions represent only 1% of the component of cosmic radiation,
being the remaining 83% protons, 13% helium nuclei and 3% electrons.

The fusion process inside the sun produces a large number
of protons and electrons. These particles travel in space through the
Solar Wind. The Solar Wind is radiated by the Sun in all directions.
Variations in the solar crown due to the rotation of the Sun and its
magnetic activities make the Solar Wind variable and unstable.

In addition to the particles provided by the Sun, Solar Winds
carry particles of other stars and highly charged ions generated by phe-
nomena such as Supernova. Supernova is the name given to the celestial
bodies arisen after the explosions of stars that produce extremely bright
objects.
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All these charged particles are influenced by the magnetic fields
of the planets forming radioactive belts around them. In the case of
Earth, the belt is known as the Van Allen Belt. The Van Allen Belt is
made up of electrons and protons trapped in Earth’s gravitational field.
Fig. 2 illustrates the influence of charged particle sources on Earth.

Figure 2 – Sources of Ionizing Radiation in Interplanetary Space
Source: (NASA/JPL-Caltech/SwRI, 2018)

All these sources of radiation interact with electronics causing
different effects on integrated circuits. (SIEGLE; VLADIMIROVA, 2015)
presents the common radiation effects that must be mitigated on FPGA

in the form of a tree in Fig. 3.
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Figure 3 – Radiation effects on integrated circuits
Source: (SIEGLE; VLADIMIROVA, 2015)

The SEE is detailed in Section 2.3. The effect called Total Ioniz-
ing Dose (TID) is depicted in detail on Fig. 4. The authors (BARNABY,
2006) describe the effects of TID on Metal-Oxide-Semiconductor (MOS)
transistor as:

“... Fig. 4(a) shows the normal operation of a
MOSFET. The application of an appropriate
gate voltage causes a conducting channel to
form between the source and drain so that
current flows when the device is turned on. In
Fig. 4(b), the effect of ionizing radiation is
illustrated. Radiation-induced trapped charge
has built up in the gate oxide, which causes a
shift in the threshold voltage (that is, a change
in the voltage which must be applied to turn
the device on). If this shift is large enough, the
device cannot be turned off, even at zero volts
applied, and the device is said to have failed
by going depletion mode.”(BARNABY, 2006)

Both radiation effects (SEE and TID) needs to be taken into
consideration when designing systems for space applications. However,
each of them has different approaches to be mitigated, and they are
also connected with the underlying technology/topology of the system
(e.g., Flash memories are more susceptible to TID while Static Random
Access Memory (SRAM) are more vulnerable to SEEs).
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Figure 4 – Schematic of n-channel MOSFET illustrating radiation-
induced charging of the gate oxide: (a) normal operation and
(b) post-irradiation.

Source: (BARNABY, 2006)

2.2 FAULT, ERROR AND FAILURE

For this section, the concepts are in agreement with (AVIZIE-
NIS et al., 2004), according to which, a system can be seen as an entity
that interacts with other entities, that is, other systems, including hard-
ware, software, humans and the physical world with their environment.
These entities, then, are the environment of a given system.

The service delivered by a system is its behavior in the way it
is perceived by its user(s) so that the correct service is provided when
the system implements its function. Thus, a system failure, or failure, is
in the event of the delivered service diverting from the correct service,
i.e., not performing the function of the system.

The period in which the incorrect service delivery occurs is
known as service interruption, just as a transition from the wrong service
to the correct service is called service restoration. An error is a system
state that can lead to a service failure. However, not all errors can lead
to the system state that causes a failure. It is the error that classifies the
fault as active or inactive. The definition of reliability is the ability to
avoid service failures that are more frequent or severe than is acceptable.

The relationship between failure, error, and failure, in the form
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of a chain of threats, can be seen according to Fig. 5.

Figure 5 – Error Propagation - Relationship cause/effect between fault,
error and failure.

Source: (AVIZIENIS et al., 2004)

The system is operating until a fault is activated (so far, the
fault may be inactive, or an external fault generates the activation),
generating an error, i.e., leading this system to the error state. The
failure occurs when the error situation is propagated, causing this service
to fail to deliver the expected result (deviate from the correct service).

Using as an analogy a processor where the Arithmetic Logic
Unit (ALU) has one of the fixed output bits at a logical level. The fault
is the bit that does not change. The error is the result of the failure (a
sum with the wrong value for example). And the failure is when another
processor unit uses the result with error, propagating the problem to
the rest of the system.

Several techniques have been developed in the last decades to
obtain reliability in computational systems, which can be divided into
four main groups:

• Fault prevention: to prevent the occurrence or introduction of
faults.
• Fault tolerance: to avoid service failures in the presence of faults.
• Fault removal: to reduce the number and severity of faults.
• Fault forecasting: to estimate the present number, the future
incidence, and the likely consequences of faults.

2.3 SINGLE EVENT EFFECTS

The error caused by radiation known as SEE can be further
classified as soft-error and hard-error, and subdivided into the following
terms (BATTEZZATI; STERPONE; VIOLANTE, 2010):
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• Soft-Errors

– Single-Event Transient (SET)
– SEU

– Multiple Cell Upset (MCU)
– Single-Event Function Interrupt (SEFI)

• Hard-Errors

– Single-Event Latch-up (SEL)
– Single-Event Gate Rupture (SEGR)

The effect called SET occurs when a high energy particle reaches
a certain point in the circuit, with the ability to change the output of
a transistor. This changes the signal level for a period (in the order of
nano/picoseconds), causing a glitch. As the name implies, it is transient,
that is, there is a double transition (0 - 1 - 0 or 1 - 0 - 1) within this
space of time. The effect of the SET is shown in Fig. 6, where a fault is
indicated in the upper left AND gate, the transition of the output can
be perceived in the third logical port, where the undesired effect occurs.

Figure 6 – SET Example
Source: (GOLOUBEVA et al., 2006)

SEUs occur on the assumption that the particle reaches an ele-
ment of memory by changing the stored data. The SEU is not considered
permanent because, in the next write operation of the memory element
affected, the wrong value will be replaced. However, if the memory ele-
ment is read-only from the system, the error can be propagated to the
rest of the circuit and thus be considered a permanent error. Another
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situation of occurrence of SEUs is in the case where the SET propagates
until it reaches a memory element, storing the undesired value.

When more than one SEU happen on a circuit, the effect is
called the MCU. And if it occurs on memory elements that make up a
larger register, the Multiple Bit Upset (MBU) is determined.

The SEFIs are the result of the particle that reaches a region
that contains functional control elements of the circuit. This effect can
affect reset signals or read/write enable signals in a memory, for example,
and may leave the element not functional.

If there is a destructive SEE, it can configure the occurrence
of an SEL - when the output of an element is at a fixed logical level
(high or low) independent of the input - or a SEGR - situation in which
a particle causes the rupture of the gate of the transistor, leading to an
increase of the leakage voltage. In both cases, an undesired increase in
current consumption, heat dissipation, and even complete component
disruption can occur, i.e., to burn the circuit.

2.4 FAULT-TOLERANCE TECHNIQUES

The techniques for fault tolerance integrate a line of research in
the area of reliability of systems, being the subject well-established com-
putational systems (GOLOUBEVA et al., 2006; KOREN; KRISHNA,
2010). It is safe to say that there are no 100% fault-tolerant systems
(BATTEZZATI; STERPONE; VIOLANTE, 2010; GOLOUBEVA et al.,
2006); several factors are involved, and therefore there will always be a
variable that can not be predicted or controlled.

In the specific case of embedded systems for space applications,
fault tolerance is not only a necessity but an indispensable design
requirement to increase the chances of success of the mission.

The techniques commonly used for fault tolerance use the con-
cept of redundancy, which can be defined as the existence (logical or
physical) of more than one resource needed to perform the action that
must be fault tolerant. Although the word redundant, when used in the
context of computational systems, can represent the idea of physical repli-
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cation of components, there are four basic types of redundancy(KOREN;
KRISHNA, 2010):

• Hardware: The most natural concept to replicate hardware and
use it whenever a fault is identified.

• Software: To be used in software failures, there may be two or
more code snippets running to prevent failure.

• Information: When the basic information is inflated with redun-
dant data, like the checksum in a register, for fault tolerance.

• Time: Use redundancy in time to tolerate failure, i.e., perform the
same activity two or more times, one after the other, to ensure a
correct result.

Examples of hardware redundancy can be simple implementa-
tions - such as the addition of duplicated circuits, one of which is used
as the primary circuit and the remaining redundant. When the fault
is detected, the logic is switched to use one of the redundant circuits.
This type of technique is known as static hardware redundancy.

We can also find hybrid solutions, where all redundant circuits
are active (performing the same function). The correct output (fault-free)
is selected through a majority voter. Fig. 7 presents the idea of hardware
redundancy with a voter, also known as TMR. The TMR technique can
be applied at several levels of abstraction, such as architecture (the ALU

within a processor) or at lower levels in the system.

Figure 7 – TMR overview
Source: (GOLOUBEVA et al., 2006)
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In the case of software redundancy, it is possible to have vari-
ations at all levels, such as data, program flow control, and hybrid
combinations. For example, we perform the same task for two different
versions of software with the same objective. If there is a divergence of
results, an action is taken.

For information redundancy, the most explicit example would
be to add data to information of interest, to identify, mask, and tolerate
errors. The data coding technique, known as a checksum, calculates
the data (as a xor operation) and adds the result to its end before
transmitting or using it. Once coded, one must make the same calculation
and compare with the attached result, in which case, if there is a
divergence, the failure can be identified.

Finally, temporal redundancy is the repetition of the computa-
tion of the same task over time, with the results of each of the repetitions
being compared, to be able to identify the fault. Fig. 8 shows the tempo-
ral execution of a computation, which in the end is compared to identify
the error.

Figure 8 – TR overview
Source: (GOLOUBEVA et al., 2006)

The rollback recovery technique is done by performing check-
points during the execution of a program, at specific intervals. Assuring
that these points do not contain errors, in the event of a failure, the
system can return to the last checkpoint and redo the execution.

The technique of interest in this work is based on the concept
of inspection points (Checkpoint), which has a slightly simple idea,
exemplified by an analogy: Suppose that it is necessary to sum the total
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of ten items from a shopping list with the use of a calculator. To obtain
the total value, one must add the ten values. However, if in the ninth
step a button is pressed incorrectly, it will be necessary to repeat all
of ten operations. The CR technique, in this analogy, would be, after a
given amount of sums - for instance, six - the partial result copied to
another place, i.e., perform a checkpoint. Thus, if an error occurs after
the sixth sum operation, merely repeat the sums starting from the last
partial value (recovery) and continue the operations.

Checkpoint and recovery can be done in computer systems,
such as processors, simply by saving the state of interest and, if an
error is detected, return to that state to redo the execution. Therefore,
checkpoint and recovery integrate the techniques of the type of time
redundancy.

Considering that there is no single taxonomy for fault tolerance
techniques, this section was intended to demonstrate one of the possible
approaches to the subject.

2.4.1 Checkpoint Recovery

The CR technique is a classic fault-tolerance technique, which
enables computing systems to execute correctly even when affected by
transient faults (SIEWIOREK; SWARZ, 2017; HENKEL et al., 2013).
The works based on the technique of CR are traditionally classified
according to the level of abstraction implemented by the system. This
classification is divided into techniques that make changes to software-
only or hardware-only (CETIN et al., 2016). While software solutions are
cheaper from the perspective of implementation, purely hardware based
have a very low overhead potential in the execution time of the same
software. It is also possible to have a combination of both, denominated
hybrid (hardware and software).

Although the concept of the technique is simple, several prob-
lems arise with the implementation, especially when taking into account
the essential details of the development, as exemplified:

• What level of abstraction (user, Operating System (OS), instruc-
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tion, hardware) should it have?
• What are the pros and cons of each level?
• How transparent should the checkpoint be?
• How many checkpoints should be made?
• At what points in the program should we checkpoint?

This is not an extensive list of problems, but it is possible to
have an idea of those intrinsic to the technique. Once you know which
target system to apply the technique and how this system should behave,
some of the issues can be addressed immediately.

In the sections that follow, the points that must be taken into
account when applying a CR technique to a processor will be presented.

2.4.2 Checkpoint Overhead

Like all redundancy-based techniques, there is an associated
overhead, whether temporal or physical. In the case of the CR technique
applied to a processor, the overhead is associated with the additional
execution time of the program, while there are no errors. In other
words, the amount of time when the system is blocked from execution
to perform a checkpoint. Fig. 9 demonstrates the additional execution
required on a system with CR. The execution of the program with
the CR has points where it is necessary to perform the checkpoint,
represented in grey tone in the figure. When execution is interrupted to
the checkpoint, the same program suffers an addition at runtime.

Figure 9 – CR overhead
Source: (GOLOUBEVA et al., 2006)
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2.5 RELATED WORKS

The works developed by (KELLER; WIRTHLIN, 2017) and
(LINDOSO et al., 2017) present combined fault-tolerance techniques
applies to the LEON3 soft-core processor for FPGAs.

(KELLER; WIRTHLIN, 2017) uses five different SEU mitigation
variations: no SEUmitigation, TMR alone, TMR with Block-RAM (BRAM)
scrubbing, TMR with Configuration-RAM (CRAM) scrubbing, and TMR

with both BRAM scrubbing and CRAM scrubbing. Both fault injection
and neutron radiation testing were conducted. Improvement is measured
in terms of sensitivity reduction for fault injection and cross section
reduction for neutron radiation testing when compared to the unmiti-
gated design. The results from both fault injection and radiation testing
demonstrate that each variation of SEU mitigation techniques improve
the SEU sensitivity of the LEON3, and that improvement increases
as more mitigation techniques are combined. When compared to the
unmitigated design, SEU sensitivity is improved from 16 to up 50 times.
The full mitigated version comes at a cost of 4.7 times increase in area
of the FPGA.

(LINDOSO et al., 2017) implements a hybrid fault-tolerant
LEON3 soft-core processor in a Xilinx Artix-7 FPGA and evaluated its
error detection capabilities through neutron irradiation and fault injec-
tion. The error mitigation approach combines the use of Single-Error
Correction / Double-Error Detection (SEC-DED) codes for memories,
a hardware monitor to detect control-flow errors, software-based tech-
niques to detect data errors and configuration memory scrubbing with
repair to avoid error accumulation. Radiation test results shows an
improvement of 4.13 times for the hardware-only mitigation techniques.
Fault-injection tests includes the software hardened approach in combi-
nation to hardware and have an average 20 times better improvement.
Both results are compared against the unmitigated variant of the pro-
cessor.

The authors in (LI et al., 2017) propose a transient-fault
countermeasure called RELI, which is a fine-grained CR approach for
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Application Specific Instruction Processor (ASIP)-based embedded pro-
cessors. RELI is supposed to be the first to realize CR at the basic-block
level by leveraging custom instruction design. To implement RELI, an
ASIP design flow based on one of the existing commercial tool (ASIP-
meister), generate the Register-Transfer Level (RTL) description of the
resultant processors with RELI functionality. The costs concerning ex-
ecution time, area, and power are reduced significantly compared to
existing techniques.

Figure 10 – Overview of RELI functionality
Source: (LI et al., 2017)

The augmented processor (i.e., RELI processor) allows CR to
be executed at a finer granularity than other works, such that the check-
point data size is reduced. Assembly code from MiBench benchmark
suite (GUTHAUS et al., 2001), compiled using SimpleScalar toolset
is used to generate the comparisons. The experimental results show
that the fault-free execution time overhead is 0.76 percent on average.
In the fault injection test, for the worst case, the recovery time is 62
cycles. RELI costs 44.4 percent area and 45.6 percent leakage power
overhead on average (for the TMSC65nm technology), and 79.3 and 77.8
percent in the worst case found in SPEC-INT2006 and MiBench suites.
This work is a complete flow continuation from the work in (RAGEL;
PARAMESWARAN, 2012) discussed further in this chapter.

(T. Li et al., 2016) presents another work, aimed at the em-
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bedded processor internal registers. The register data dependency is
used to minimize the register file traffic required by the register file CR.
The proposed logging CR scheme, named RECORD, considers various
register data dependencies, which can potentially identify and eliminate
the redundant executions of register file checkpointing at runtime. This
approach is supposed to be the first to realize a hardware-based logging
checkpointing mechanism, which strategically utilizes the first processor
executions to diminish the additional checkpointing operations at run-
time, for embedded processors. RECORD is implemented in an ASIPs to
evaluate the proposed scheme for embedded processors. The technique
presents a lower register file traffic and better dynamic power saving
with little hardware and performance overhead when compared to other
works.

The authors in (OLIVEIRA; TAMBARA; KASTENSMIDT,
2017) propose a Dual-Core Lock Step (DCLS) approach to increase
the dependability of hard-core processors embedded in programmable
System-on-Chips (SoCs), which combines the programmable logic with
the high-performance hard-core processor. The DCLS is a dual-core
ARM Cortex-A9 processor embedded into the Zynq-7000 APSoC. It is
a novel implementation of lockstep in the dual-core Cortex-A9. ARM
provides some processors versions with built-in lockstep, such as Cortex-
R5 processor, which could be configured to application reliability. An
overview of the proposed system is depicted in Fig. 11, note that PS and
PL stand for Processing System and Programmable Logic, respectively.

Two versions of the technique are compared with the unhard-
ened Cortex-A9 processor. The first uses only the BRAMs to store the
checkpoint data, and the second uses the external DDR memory as
secondary storage for the checkpoint data. Area results show an increase
of 100% for the processor and memories. As for the execution time,
three matrix multiply programs are evaluated. Being the longer the
execution time, lower is the time overhead. The BRAM version has an
increase of 26%, and the DDR version has a 47% increase on the total
clock cycles for the 20x20 matrix. The further work by the authors in
(OLIVEIRA; TAMBARA; KASTENSMIDT, 2017) shows that up to



2.5. Related Works 51

Figure 11 – Proposed DCLS Architecture for dual-core ARM Cortex-A9
Source: (OLIVEIRA; TAMBARA; KASTENSMIDT, 2017)

91% of the bit flips injected in the ARM registers are mitigated by the
technique.

The work presented by (VIOLANTE et al., 2011) present a
design flow that can be used by designers to mitigate radiation-induced
errors affecting processor IP cores embedded in FPGA-based SoCs for
systems that have to be deployed in harsh environments. The design flow
used the concepts of lockstep, checkpoint with rollback recovery, and
on-demand configuration memory scrubbing (in case of SRAM-based
FPGAs) to provide a balance between resources overhead and fault
tolerance. The flow can be automated, reducing the total development
costs, while increasing the quality of the resulting product. The au-
thors provide a prototypical implementation of a design environment,
supporting the proposed flow, and applied it to the design of a system
using a Leon processor IP core. An overview of the proposed system is
presented in Fig. 12.

The overhead on time for this implementation ranges from 17%
to 54%, depending on the software being executed. In the fault injection
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Figure 12 – Overview of the system in (VIOLANTE et al., 2011)
Source: (VIOLANTE et al., 2011)

campaign, 10.000 random SEEs were injected, being 84% of them being
latent or detected and corrected; 15% triggered errors in the system
(the authors modified the instruction trap of the processor to perform a
rollback), and the configuration memory scrubber handled the last 1%.

The following subsections present older, but also necessary,
works related to CR implementations in computational systems.

2.5.1 Hardware Approaches

The work developed by (KANG et al., 2014) aims for the best
positioning to perform checkpoints on a CR technique implemented
together with DMR to tolerate transient errors. The target application
is specified by a task graph, with the scheduling and placement of the
checkpoints determined at design time. The architecture used is shown
in Fig. 13, which follows.

The system has two pools of processors, called Master and
Checkers. The first one works independently, that is, it makes the
accesses and writes to the system output as if it were the only processor(s)
in the system. The Checker pool executes the same program as the
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Figure 13 – Proposed Architecture by (KANG et al., 2014)
Source: (KANG et al., 2014)

master, but it is only used to compare results for error detection. Thus,
once the divergence is detected, by the checkpoints processor, the
correction is performed returning to the last valid state.

The experimental results were analyzed for the situations of a
single processor and multiple processors, where algorithms are proposed
for each case. To obtain the results were used as benchmark graphs
generated with the tool SDF3 (STUIJK; GEILEN; BASTEN, 2006).

The main contribution of this work is the checkpoint cut lattice
(CCL) algorithm, which was efficient in reducing the latency for multi-
processor fault-tolerant applications when compared to the greedy and
equidistant reference algorithms. Also, when compared to the other ref-
erence algorithms, the CCL algorithm drastically reduced the overhead
caused by the checkpoints.

Another work that uses changes in the hardware level is pre-
sented by (KOCH; HAUBELT; TEICH, 2007), with a mechanism to
perform the CR. The authors consider that a hardware module can be
modeled as a Finite State Machine (FSM), and with this premise to
obtain the state of the FSM to perform the checkpoint. Fig. 14 shows a
pure state machine (a) and the modification to collect checkpoints (b),
using the authors’ technique.

Also, in this work, a development flow for the hardware is
proposed, as shown in Fig. 15, which performs an analysis of all flip-
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Figure 14 – Circuit comparison of an implementation with (a) a tradi-
tional FSM and a FSM with checkpoint
Source: (KOCH; HAUBELT; TEICH, 2007)

flops in the system and replaces them with the CR technique. Finally,
ways to obtain the status of the FSM and its costs are analyzed.

Figure 15 – Development flow of the work by (KOCH; HAUBELT;
TEICH, 2007)
Source: (KOCH; HAUBELT; TEICH, 2007)

In works (Enshan Yang et al., 2013) and (FOUAD et al., 2014),
implementations of CR are analyzed focusing on SRAM FPGAs. The
former, authors propose Hierarchical Hardware Checkpointing (HHC),
which is intended to improve system recovery performance after a
detected error. The reference system is based on checkpoints made
from reading the bitstream of the FPGA. HHC introduces a hardware
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solution implemented within the FPGA to increase bandwidth when
performing context recovery. The authors compare with the traditional
way, where the state (checkpoint) of the system is stored in an external
chip. The proposed architecture is presented in Fig. 16.

Figure 16 – Comparison between the checkpoint method proposed in
HHC: (a) off-chip and (b) on-chip.

Source: (Enshan Yang et al., 2013)

The work in (FOUAD et al., 2014) also aims to reduce system
recovery time after an error. For this, contexts of different parts of
the hardware are saved and, in the case of the error, this context is
resumed only for a defined piece of the hardware, using dynamic partial
reconfiguration. The authors’ contribution is presented as an algorithm,
called Context-Aware Resources Placement (CARP), executed in the
place and route phase, which analyzes the hardware from the point
of view of tasks, positioning the components to decrease the overload
times for dynamic partial reconfiguration.

In older work, such as (AHMED; FRAZIER; MARINOS, 1990)
and (WU; FUCHS; PATEL, 1990), modifications are proposed in the
cache memory update algorithm, aiming at the integrity of the system
checkpoints and ensuring that the data exchanged between the proces-
sors are coherent. In these implementations, the CR technique becomes
transparent to the user level and is fully implemented in hardware.
However, the prerequisite of the method for the cache algorithm to work
is the existence of a shared memory bus, in which everyone can detect
the information that travels.
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2.5.2 Software Approaches

The work of (OH; SHIRVANI; MCCLUSKEY, 2002b; OH;
SHIRVANI; MCCLUSKEY, 2002a) and (REIS et al., 2005) present
solutions for temporal redundancy made purely in software, bringing
instructions and compiler level modifications to avoid transient errors.
The Error Detection by Duplicate Instructions in super-scalar proces-
sors (EDDI) (OH; SHIRVANI; MCCLUSKEY, 2002b) and Control-
Flow Checking by Software Signatures (CFCSS) (OH; SHIRVANI; MC-
CLUSKEY, 2002a) are complementary.

In the first one, it is used the duplication of instructions, in
registers and different variables for a superscalar processor (JOHNSON,
1991), seeking the detection of errors. It also takes into account the
moment of insertion of the instructions to take full advantage of the
parallelism of the processor, reducing the overhead of the technique.
Fig. (REIS et al., 2005) shows the original code snippets and the EDDI
technique.

Figure 17 – Code snippet of the (a) original code and (b) after the
technique of the EDDI.

Source: (REIS et al., 2005)

The CFCSS adds signatures in the instructions to identify prob-
lems in the program execution control flow. The Software Implemented
Fault Tolerance (SWIFT) (REIS et al., 2005) work, makes use of EDDI
and CFCSS techniques, adds Error Correction Code (ECC) and makes
optimizations in each of the techniques. The results presented show
superior performance in SWIFT, when compared to the other works, in
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all the experimental tests.
Note that none of the works in this section makes use of the

CR technique, but they present fault detection schemes. In fact, ap-
proaches for recovery and detection of failures are complementary and
consequently related, because, after an error-detection, it is necessary to
act to correct it or to take action, preventing the system from entering
an invalid state. Therefore, these techniques can be easily extended to
support fault tolerance.

2.5.3 Hybrid Approaches

The authors in (RAGEL; PARAMESWARAN, 2012) imple-
ment a hardware and software-based scheme for embedded processors
using the CR technique. The processor architecture is based on the
SimpleScalar tool (LLC, 2015) and the PISA (portable instruction
set architecture) instruction set (very similar to MIPS (HENNESSY;
PATTERSON, 2002)).

The proposed solution, called Reli, adds three instructions to
perform the recovery and makes changes to the other relevant instruc-
tions to carry out checkpoints. The implementation flow, presented in
Fig. 18, is done in two steps: hardware modification at the RTL level
to add the CR in the architecture and at the software level to use the
application (assembly code) as input of the integration tool, which will
generate a memory containing the set of target instructions, different
from those produced by the standard compiler.

In this work, three test flows are performed to obtain the results:
runtime without failures, fault recovery time, and analysis of the area,
energy loss, and timing. The software executed to get the reference
times is based on the MiBench benchmarks (GUTHAUS et al., 2001).
The fault detection technique implemented in Reli is similar to the one
proposed in the IMPRES (RAGEL; PARAMESWARAN, 2006) work
where the detection system monitors the bit-flips in the instructions
and communicates to the Reli at the end of each block.

In the case of fault-free execution, an average execution over-
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Figure 18 – Proposed flow for Reli
Source: (RAGEL; PARAMESWARAN, 2012)

head of 1.45% was measured. The fault injection execution, the single-flip
bit model was used, with 1000 failures injected for each run, obtaining
a recovery latency with a mean of 17.9 and 13.8 clock cycles, for the
worst and best cases, respectively.

The last test performed was focused on the implementation of
the system for an ASIC, using the 65nm TSMC library. Area overhead
was calculated by comparison with the base processor, without the CR

technique, which led to an average increase of 45%. The current leakage
showed an average rise of 46%, while the operating frequency timings
of the circuit remained at the same levels of the base architecture, i.e.,
for this application set, there was no change in the clock period.

A second work focused on the implementation of fault tolerance
in embedded processors, is presented by (LI et al., 2013a). The authors
apply parameters of performance, area and power consumption to
generate a processor with two fault tolerance primitives. Instruction
Vote and Replay (IVR) performs instruction level recovery by executing
the same instruction three times and voting at the end - similarly to
TMR systems. Block Checkpoint and Recovery (BCR) aims to save the
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state with each update of the system information within an instruction
block and, if the update contains an error, the state is reverted to the
last safe point, as the CR technique predicts.

The decision problem for the choice between the available
techniques (IVR and BCR) is NP-complete. Therefore, a heuristic, in
the form of an algorithm, is presented as the contribution of the work
to apply in the available code. The base processor is modified according
to the design parameters, adding information in the instructions to
determine if they are of type IVR or BCR. The execution flow is shown
in Fig. 19:

Figure 19 – Proposed flow for CSER
Source: (LI et al., 2013a)

The obtained results are comparisons between the implementa-
tion of SWIFT (REIS et al., 2005) work with fault tolerance in software,
a Reli implementation (RAGEL; PARAMESWARAN, 2012), and three
variations of the application of the proposed technique (with the pure
IVR, pure BCR, and Hybrid configurations). The results show that the
reliability of the hybrid configuration is up to nine times better than
the other techniques when the parameters are pushed to the limits.

Finally, Dynamic heterogeneous adaptation for soft-error re-
siliency in ASIP-based multi-core systems (DHASER) by (LI et al.,
2013b) presents an efficient way of recovering errors for ASIP-based
multiprocessing systems. The proposed work is divided into three parts,
as shown in Fig. 20: (1) task level correctness (TLC), (2) processor/core
personalization based on TLC and (3) mechanism of adaptation at
runtime.

To generate the system, it starts by analyzing the tasks that
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Figure 20 – Proposed approach for DHASER
Source: (LI et al., 2013a)

will be executed, to obtain a TLC index, which indicates the level of task
requirement reliability - the higher the value, the lower the requirement
for reliability of the task set.

The TLC index set is used in the second step, which generates
a multi-processed heterogeneous system, in which all processors have
the same instruction set (Single-ISA), but with different reliability
techniques (such as spatial redundancy, temporal redundancy or no
redundancy). Therefore, task sets are grouped into different processors
at design time.

Finally, there is a run-time adaptation, which seeks to maintain
reliability levels for running tasks, in order to correct any errors in the
task/processor association during the design time.

The results are taken from implementations based on the
LEON2 processor, doing an analysis for ASIC synthesis and Hardware
Description Language (HDL) performance simulations. The simulations
in HDL use six tasks, with a number of cores between four and six. Thus,
the fault injection test presented reliability gains of up to 20% when
compared to the base models.
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2.6 WORK POSITIONING

In view of the related work described above, this section presents
a comparison, analyzing the negative and positive points,for the following
selected works:

W1. Fine-Grained Checkpoint Recovery for Application-Specific
Instruction-Set Processors (LI et al., 2017)

W2. Applying lockstep in dual-core ARM Cortex-A9 to mitigate
radiation-induced soft errors (OLIVEIRA; TAMBARA; KAS-
TENSMIDT, 2017)

W3. A Low-Cost Solution for Deploying Processor Cores in Harsh
Environments (VIOLANTE et al., 2011)

W4. Optimal Checkpoint Selection with Dual-Modular Redundancy
Hardening (KANG et al., 2014)

W5. Efficient hardware checkpointing (KOCH; HAUBELT; TEICH,
2007)

W6. HHC: Hierarchical hardware checkpointing to accelerate fault
recovery for SRAM-based FPGAs (Enshan Yang et al., 2013)

W7. SWIFT: Software Implemented Fault Tolerance (REIS et al., 2005)

Table 1 presents the above related works in contrast with two
implementations on this thesis (the time redundant (PTR) and flow
control DMR (PDMR approaches)).

Firstly, related works are classified according to the target
hardware. The abstraction layer is according to Section 2.4.1, that is
Hardware, Software or Hybrid. The modification stage is related to three
locations where the fault-tolerance technique acts. That is modifications
to hardware, compiler, and source code. Lastly, the fault-tolerance
techniques that were used.

All hybrid works have modifications in the hardware. Since
they differ on the target, W1 focus on an ASIP while W2 and W3 aim
at Processors in SRAM FPGAs. When compared with PTR and PDMR,
which are also focused on processors, the proposed approaches have no
modifications to the source code. Regarding the Fault Tolerance (FT)



62 Chapter 2. Reliability Improvement Strategies for Microprocessors

Table 1 – Related work positioning

Target Hardware Abstraction
Layer

Modification Stage FT
TechniqueHardware Compiler Source Code

W1 ASIP/ASIC Hybrid Y Y N CR+ISA
W2 Processors/SRAM FPGA Hybrid Y N Y DCLS+CR
W3 Processors/SRAM FPGA Hybrid Y N Y DMR+CR
W4 MPSoC/Generic Hardware Y N N DMR+CR
W5 IPs/FPGA Hardware Y N N TMR
W6 IPs/SRAM FPGA Hardware Y N N CR
W7 - Software N Y N CR
PDMR Processors/Flash FPGA Hardware Y N N DMR+CR
PTR Processors/Flash FPGA Hardware Y N N CR

technique, the aforementioned related works use the CR in combination
with another technique, mainly to detect faults — the only exception is
PTR which uses CR to both detect and correct errors.

Solutions in W4, W5, and W6 while based on hardware, have
different targets and FT techniques. W4 is based on DMR+CR for Multi-
Processor SoCs (MPSoCs), which means if there is a dual-core system, it
will end up with two dual-core systems in a DMR configuration (four
cores on total), recovering the system using CR. W5 focus on FPGAs, but
the target application is an IP-block. Supposedly, it would be possible
to have soft-core processor inside the IP. Likewise, W6 is for IP/FPGA,
but the focus is on the configuration memory recovery time using CR.

Lastly, PDMR and PTR are pure hardware based designed to
processors on FPGAs. The main difference is the use of flash FPGA for
both. The CR implementation used on PTR and PDMR is the same,
being the fault detection mechanism different. The fault recovery is
done via the rollback feature of the CR.

All strategies aimed at processors presented modifications to
either software and/or compiler with hardware. We present a pure
hardware-based solution to deal with SEUs. In the present approach,
there are no need to rewrite, or even recompiled the original code, the
entire fault-tolerance is done by the modified architecture.
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3 PROPOSED CHECKPOINT RECOVERY TECH-
NIQUE

The CR technique works by saving checkpoints considered safe
during the execution of a processor (KOREN; KRISHNA, 2010). When-
ever an error is detected, a rollback to the last known safe state is
performed, namely recovery. To better understand the CR technique,
Fig. 21 depicts a hypothetical scenario: after a checkpoint (Ck) is per-
formed at t = 2, instructions In+1, In+2 and In+3 are executed. At time
t = 6 the error is detected, causing the recovery to occur. After recovery,
the three instructions are executed in the same fashion and the fault is
overwritten with the right result.

Figure 21 – Checkpoint Recovery Technique Scenario

If the SEU occurs in an element of the circuit, and, if the element
is overwritten with the correct value after the SEU is identified, the
error can be corrected. Therefore, the CR technique, which repeats the
operation of a point considered safe, is a reasonable solution.

The following sections present in detail the implementation of
the CR technique.

3.1 CONSTRAINTS AND ASSUMPTIONS

Before we advance into more details about the proposed tech-
nique implementation, some of the design decisions made need to be
explained. We consider the environment to be the space, more precisely,
an embedded FPGA on satellites. Up to Low Earth Orbit (LEO), the
expected radiation dose is around 0.1 krad/year, meaning a five-year
mission can have ∼0.5 krad dose (PETKOV, 2003). The Geosynchronous
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Earth Orbit (GEO) can also be considered once it has a dose rate of ∼10
krad/year, but the FPGA of choice has to withstand this dose.

For that reason, the FPGA hardware is flash-based, in our case
the Microsemi ProASIC3e FPGA (Microsemi Inc., 2017). In this type
of FPGA, the configuration memory is not affected by SEUs (VILLA
et al., 2017). Furthermore, this hardware can be migrated to an anti-
fuse FPGA, where the configuration memory, after written, cannot be
changed, resembling the FPGA to an ASIC (MCCOLLUM, 2009).

Although the configuration memory on the ProASIC3e is sus-
ceptible to TID, a dose of up to 30 krad seems not to affect the FPGA

implemented circuit (KASTENSMIDT et al., 2011). The use of SRAM-
based FPGAs, at the present stage, have not been considered, mainly
because the configuration memory suffers significantly with SEE. Once
the configuration memory is affected, the underlying implemented hard-
ware (in our case, the soft-core processor) can behave erroneously. The
error mitigation of configuration memory is a vast field of study with
specific techniques, that could be integrated into this work.

The assumed fault model that is being mitigated is the SEE,
more precisely its subtype SEU. Literature shows that SEU is the pre-
dominant failure when considering processors (REORDA et al., 2009;
LESAGE; MEJIAS; LOBELLE, 2011). Also, we assumed in our fault
model that only single-faults can occur.

For the CR technique, the granularity of the checkpoints (i.e.
how often checkpoints are performed) need to be taken into consid-
eration, once it introduces overhead in the processor execution. We
used the metric that after every write operation to the main memory,
the state can be saved, similarly to (VIOLANTE et al., 2011). This
approach assumes that up to that point, if the error-detection mecha-
nism did not identify the error, the state of the system has not been
compromised. Another possible approach that could be used, presented
by (RAGEL; PARAMESWARAN, 2012), is to save a checkpoint before
the occurrence of a jump instruction in the execution of the program.

Once we are dealing with SEUs, the main storage system is vital
to keep the system running. Since the program runs on the main memory,
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if it presents errors the processor can misinterpret the instructions. For
that matter, the main memory is assumed to be external and protected
by an Error Detection And Correction (EDAC) technique. Furthermore,
the cache memories are disabled for two reasons: they are additional
area susceptible to SEUs, and since we are using writes to the main
memory as reference points, the caches can interfere on the processor
synchronization.

Also, like any other technique of fault-tolerance, there are
two stages to implement fault-tolerant systems: Error-detection and
Error-correction. These are two separated phases, which most methods
integrate them into one single scheme. e.g. the TMR approach works by
voting the majority of results and masking the disagreeing information.
The voting process can be seen as the error-detection stage, and thus the
masking is the error-correction. With this in mind, we propose the use
of the CR technique to detect errors, by executing twice every slice of
instructions (comprised between two checkpoints) and performing a third
execution of the slice to correct a possible detected error. Nonetheless,
other error detection schemes are implemented to be compared.

3.2 TEST VEHICLE

The LEON3 (Aeroflex Gaisler, 2015b) is the processor chosen
as the target system of this work, due to the significant acceptance in the
scope of space applications. It is a synthesized model, described in VHDL,
of a 32-bit processor compatible with the SPARC V8 architecture, made
available by the company Aeroflex Gaisler, under the GNU GPL license.
The source code is free to use for research and educational purposes
and is distributed as part of the GRLIB IP library (Aeroflex Gaisler,
2015a).

LEON3 is very configurable, being easily integrated into SoCs,
accepting the multiprocessing configuration (up to four CPUs) and
a wide variety of peripherals. A LEON3 configuration, with a single
CPU, is shown in Fig. 22, where the main peripherals available in the
GRLIB are shown. The LEON3 is a type of SoC based on the Advanced
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Microcontroller Bus Architecture (AMBA) bus.

Figure 22 – LEON3 SoC Architecture Overview
Source: (Aeroflex Gaisler, 2015a)

More specifically, the LEON3 CPU core is based on a seven-
stage pipeline, and may include other processing modules, such as a
floating-point unit. In addition, a unit called Debug Support Unit (DSU)
is integrated with the processor, which is also connected to the AMBA

bus, to aid in debugging the CPU. These details are presented in Fig. 23,
which also depicts the interface between the CPU and the AMBA bus.

Figure 23 – LEON3 Internal Components
Source: (Aeroflex Gaisler, 2015a)
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The LEON3 pipeline is similar to the five-stage classic
RISC (HENNESSY; PATTERSON, 2002), with additional two stages,
one for access to the register bank and one for the resolution of traps
and interrupts. The stages of the LEON3 pipeline are depicted in Fig. 24
with the main registers shown and each stage is described as follows:

• FE (Instruction Fetch): If the instruction cache is enabled, the
instruction is read from the cache. Otherwise, the search is routed
to the bus. The instruction is valid at the end of this stage and
stored in the Integer Unit.

• DE (Decode): The instruction is decoded, the jump addresses and
CALL are generated.

• RA (Register access): Operands are read from the register bank
or diverted by internal data.

• EX (Execute): ALU operations, logic and offset are performed.
For memory (LD) and JMPL / RETT operations, the address is
generated.

• MA (Memory): Access to main memory.

• XC (Exception): Traps and interrupts are resolved. For cache
readings, the data is properly aligned.

• WB (Write Back): The result of an ALU operation, logic, offset,
or cache is written back to the registrar database.
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Figure 24 – LEON3 Pipeline
Source: (Aeroflex Gaisler, 2015a)
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The GRLIB provides several designs for different FPGA vendors.
These designs have a common characteristic of a single VHDL file for
the top entity (leon3mp.vhd) and another file for the configuration of
the processor (config.vhd). The top entity contains the instantiation
of the leon3s that comprises the processor and its internal components
(Fig. 23). The VHDL code is very modular, with each component within
separate file. To better understand the hardware modifications needed to
implement the CR technique, the relationship between these components
are presented in Fig. 25. Note that the LEON3’s Integer Unit it is in the
same level of the Cache Controller/AMBA Interface, and the Register
File is in another level of modularity.

Figure 25 – LEON3 Entities Overview

Since the same entity responsible for the cache it is also re-
sponsible for the AMBA interface, it will always be instantiated inside
the LEON3 processor. When the cache memory is disabled, the inter-
nal FSMs bypasses the cache memory access. The main components
comprising the proc3 entity and the relationship between the Integer
Unit (IU3) and the Cache Controller/AMBA Interface are depicted in
Fig. 26.
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Figure 26 – PROC3 Connections Overview

3.3 IMPLEMENTED ERROR-DETECTION APPROACHES

To perform the rollback in the processor, the CR hardware
needs to be aware of the error, meaning an error-detection must be
implemented. There are several error-detection techniques in the litera-
ture. This study does not primarily aim at the detection of a SEU (i.e.,
error detection), as it can be considered another field of study by itself.
Instead, we used fault tolerance techniques, which have fault-detection
as their starting point. Three techniques have been used: the classical
TMR (MARTINS et al., 2015); a bus-based DMR approach (FERLINI
et al., 2012); and a time-redundant execution. The Fig. 27 presents the
three architectures used in the experiment.

Fig. 27(a) uses a bus-based DMR to detect errors and inform to
the CR module to perform the rollback on both processors. Fig. 27(b)
is a classic TMR where it always detects single errors and masks single-
faults using a majority voter. Fig. 27(c) employs the time redundant
approach that executes twice every slice of code. In this case, the CR

module saves the address and data that is going to be written on the
main memory on the first attempt. After, rollback is performed, and
the second address and data generated are compared with the ones
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Figure 27 – Different Architectures Used for Error Detection: (a) bus-
based DMR, (b) bus-based TMR, and (c) single-processor
time-redundant.

saved in the first execution. When there is a match, the memory write
operation is performed and a new checkpoint is saved, advancing the
code execution to the next slice. If the values do not match, the second
execution address and data are also stored by the CR hardware and
another rollback is done to have a third execution of the code. This
way, the CR hardware can use the result of three executions to perform
a simple majority vote (similarly to the TMR) and write to the main
memory the correct value. In the case of three different executions,
an error signal is raised, similar to the voter error on TMRs approach,
bringing the processor to a halt.

3.4 IMPLEMENTED CHECKPOINT RECOVERY APPROACH

During its normal operation, the processor creates checkpoints,
which represent consistent states that can be restored. The checkpoints
are a copy of the current processor state, more specifically the content
of the pipeline registers. Any changes to the register file since the last
consistent checkpoint are saved. The granularity of the checkpoints
was designed, in such way that one checkpoint is created every time
the processor executes an instruction that performs writes in the main
memory. Since the main memory is the reference, instruction and data
caches were disabled on the processor configuration. Even though the ab-
sence of cache in the processor degrades overall performance (regarding
execution time), it also introduces another point of failure for SEUs.

To implement the CR technique, the LEON3 hardware was
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modified. The first step was to find all the registers on the pipeline
that holds the current state of the processor. In more detail, the IU3
unit has VHDL processes, comprising the entire pipeline that needed to
be saved. Despite the fact that the instruction and data caches were
disabled, there are FSMs that control the communication between the
Integer Unit (IU) and the AMBA bus, and need to be checkpointed as
well. A single checkpoint signal is connected to all modules involved.
When the main memory write is detected, it causes the checkpoint by
copying all the data to redundant registers.

In Fig. 28 the modified proc3 unit is presented with the internal
connections to the IU3 and Cache Control units, the requests to perform
the checkpoint or recovery is done through a dedicated set of signals
(indicated in the chkp/recov signal on the figure).

Figure 28 – Modified PROC3 unit with CR Control Unit.

The register file, likewise, needs to be taken into consideration
when recovering the processor state. In order to do so, a fourth port
was added to the register file to perform a read on the register that
is currently being written. This way the old value can be saved in a
memory stack. On the recover event, the stack is dumped back into the
register file, bringing it back to its safe state (last checkpoint). This
process was made inside the leon3x unit and is presented in Fig. 29.
The Register File Checkpoint Unit is responsible for multiplexing the
connections between the proc3 unit and the modified 4-port register file.
In the normal operation, the fourth-port address bus is connected to the
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write port address, meaning that when a write operation is performed,
the fourth port data output the register value being overwritten. This
data value, along with the address, is then pushed into the stack by the
Checkpoint Unit. In the event of a new checkpoint, the stack memory
is flushed since all values inside the register file are supposed to be
correct. If an error is detected, the recovery process is activated and
the Checkpoint Unit initiates to perform writes to the Register-file.
The address and data are pushed out of the stack and written to the
Register-file. When the stack is empty, the recovery process of the
Register-file is finished.

Figure 29 – Modified LEON3X unit with Register-file Checkpoint Unit
and Stack Memory.

To perform a recovery on the aforementioned system, the pro-
cessor needs to be halted for a period of time. This time is required
to write the registers back into the Register-file, and recover the IU3’s
pipeline. In order to do so, a second AHB-master unit is connected to
the AMBA bus. Its function is to request the AMBA-bus, through an
write request, forcing the LEON3 processor into a halt state. While the
second AHB-master owns the AMBA bus, the recovery process is done.
This unit is part of the CR implementation.

Going into detail, the top-level VHDL file (leon3mp.vhd) of
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the design on the GRLIB instantiates the unit leon3s. This unit is a
wrapper to the aforementioned leon3x unit, with a few connections to
gnd and vcc.

3.5 DMR AND TIME-REDUNDANT IMPLEMENTATION

The implementation of the DMR and Time-redundant ap-
proaches have different fault-detection schemes, while the former is
based on transactions on the AMBA bus, the latter compares the pair
address/data being written to the main memory.

For the DMR implementation, there is a module that compares
transactions on the AMBA bus. Fig. 30 depicts the main connections of
the LEON3 in order to achieve the same results presented by (FERLINI
et al., 2012). The modification here are the ones presented to get the
CR technique running inside of each LEON3 processor (presented in the
section above). Note that the controller of the CR technique is in the
top-level, along with the instantiation of both processors. Whenever the
outputs do not match, a signal error is raised, the controller request
the AMBA bus, and when it granted, it sends a recovery signal to both
processors. After the recovery, both processors continue to run the
program.

Figure 30 – Detailing of the LEON3 DMR connections.

The time redundancy is obtained by using the CR mechanism,
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to run each interval between checkpoints twice. In order to do so, the
main connections of the LEON3 Time-redundant are depicted on Fig. 31.
Fig. 31(a) presents the top level instantiation of the LEON3 and the AHB
unit to the AMBA bus, and Fig. 31(b) presents the modifications made
inside the already modified proc3 unit (Fig. 28). Note that Fig. 31(b)
is a detailing of the LEON3 unit in Fig. 31(a).

On the first run, the processor saves the information of the
memory write instruction, but does not allow it to proceed, bypassing
the memory write enable signal (Write Mux on Fig. 31(b)). Then, a
rollback is performed, and the processor executes all instructions from
the last checkpoint. When the second run reaches the memory write
instruction, the CR mechanism compares address and data to the ones
stored from the first run, if they are equal, the main memory is written
and the process repeats, otherwise, the fault is detected and a mismatch
is signalised.

Figure 31 – Detailing of the LEON3 time redundant connections.

Since the checkpoints are based on memory write, both tech-
niques presented here (DMR and Time-redundant) monitor the AMBA

write signal coming from the processor, whenever it raises to high, the
checkpoint is performed overwriting the old one.
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3.6 CHECKPOINT RECOVERY HARDWARE CONSIDERATIONS

Each checkpoint is an image of the state of the system consid-
ered safe. Such checkpoint is a form of data redundancy. In our case,
the data redundancy is comprised of the processor pipeline and register
file modifications. As aforementioned, not only the iu3 unit and the
register file that contain information but also, the units icache, dcache,
and acache. Table 2 presents the amount of data in bits for each unit
and the size of the stack for the register file address and data.

Table 2 – Checkpoint storage data size

Component Bits
iu3 2502
icache 323
dcache 830
acache 34
stack data 2048
stack addr 512

Total 6249

The iu3 unit individually has the major quantity of data
(2502b) since it is a copy of the entire LEON3 processor pipeline. The
stacks summed account for 2560 bits since they are 64 positions of
8 bits for the address and 64 positions of 32 bits for the data. Both
stacks can be easily protected against errors using an ECC based on
the requirement, ranging from parity to extended-hamming or Cyclic
Redundancy Check (CRC).

The other components’ checkpoint data can be protected in
a similar form, but preferentially with the use of signatures (such as
checksums) since there are different registers widths. It would be possible
to read the entire checkpoint as a string of bits and calculate a signature
to confirm integrity.

Another weak point is the checkpoint hardware control and
its components. This hardware is also susceptible to SEUs that could
cause the system to malfunction. The checkpoint hardware is mostly
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comprised of combinational logic and the amount of data stored is
relatively when compared to the entire SoC. Since combinational logic
is not affected by SEUs and the stored data can be further mitigated, at
this stage, we consider that it would not be affected.

Lastly, it is important to mention that there are no modifica-
tions outside the LEON3 RTL code. This means the same code, compiled
to the original LEON3, can be run seamlessly on our architecture. The
only difference is how the code is going to be executed and recovered
(in case of an error).
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4 EXPERIMENTAL RESULTS

In this chapter, we describe the adopted simulation method,
test setup, and benchmarks used in our tests to obtain simulation results.
We use the fault definition according to (AVIZIENIS et al., 2004). All
results here described, have been based on premises from Section 3.1.

4.1 SIMULATION METHOD

To run our tests, the LEON3 processor was simulated using
the Modelsim tool. The fault injection was performed according to
the pseudo-algorithm in Fig. 32. The fault injection script reads all
LEON3’s IU registered signals (memory elements). For each signal, a
new simulation is run (line 2). In each simulation, a random time is
picked (line 3) and ran. After the runtime, the current signal value is
read (line 4), and a SEU is simulated by inverting one bit inside the
signal value (line 5) and applying it to the current signal using a force
command (line 6). Note that this force command modifies the signal
until it gets overwritten, known as deposit on the simulator tool. Finally,
the simulation is run until its end. This means that the program comes
to its final state, by raising a stop signal, or an error signal (if detected
by the simulation script). In line 10 we make sure we have enough
samples to fulfill a confidence interval of 95% and a margin of error less
than 5% (since it is a simple random sample: 0.98/

√
n, or at least 400

runs).
The simulation results were classified according to Fig. 33. After

fault injection, there are three possible results (outcomes): Correct,
Detected, or Failure. A correct result implies in either no error detected,
and/or a latent error detection. This means that the fault in that signal,
at a given time did not affect the execution. A failure means that the
fault causes a failure in the processor without being possible to detect it.
Lastly, the detected fault is the result of an error, which can be further
classified in three possible situations according to the fault-tolerant
technique used: Recovered, Not-recovered, and Recovered incorrectly. A
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1 do{
2 foreach(signal current in L3.IU3){
3 run rand();
4 value = read(current);
5 seu(&value);
6 force(current, value);
7 run all;
8 runs++;
9 }

10 }while(runs < CONFIDENCE);

Figure 32 – Simulation Steps Pseudo-algorithm

recovered case is when after detect, the recovery process acts accordingly,
and the program finishes its execution with the expected result. A not-
recovered error happens when the recovery process fails to complete the
program, either without the expected result or a time-out. The last case
is when the recovery process is performed, and the program reaches its
final state with an incorrect result. This can happen when the error
occurs on the variable that controls a loop, for example.

Figure 33 – Fault states diagram

4.2 EXPERIMENTAL SETUP

For each architecture of our tests a set of four programs were
used to stress the processor instruction set as follows:
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1. Basic: a simple arithmetic operation that is executed 50 times and
checked against the correct value. This program aims at repetition

2. Bubble sort: classic bubble sort algorithm, performs five times the
procedure of filling a ten element vector, sort it and verify the
vector order.

3. NMEA: calculate the checksum (bitwise xor) of ASCII codes on
a message string five times.

4. Hamming: calculate a hamming encoded message using matrices
five times.

It is important to note that we did not use a more classic test
program (such as dhry, stanford, or whetstone) since the simulation time
was prohibitive, e.g. over a day on a high-end computer for a single
execution. In order to circumvent this issue, the above programs were
written in standard C language trying to comprise some of the classic
code flow execution. Nonetheless, the chosen workload applied to the
four variations of the LEON3 took over a week of computer simulation.
This translates into over 2GiB of raw data logs.

Fig. 34 presents a breakdown of the number of instructions
executed in the unmodified architecture for our workload. These figures
were obtained from the simulator by enabling the console disassem-
bly feature. This means that these instructions were executed inside
the LEON3’s pipeline. This approach is more accurate to observe the
dynamic execution of each program, differently from dumping the in-
structions from the source code (which is static).

All programs, except for basic, have the major incidence of
ld instructions. bsort and hamming have a very similar profile, but the
former has 11% of memory write instructions (st and stb) since the
vector is in the main memory. It is interesting to note that all programs
have a high incidence of nop instructions. Indeed, once the cache is
disabled, the processor pipeline needs to be stalled until the information
arrives from the main memory. basic and nmea have a higher incidence
of arithmetic operations, being the addition and shifting respectively.
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The General Purpose Input Output (GPIO) pins are used to
signalize the external world when it began and finish. These signals are
used to assert the correctness of the execution and/or error states. For
instance, if the program bsort on its verify state find an unordered
value, an error signal is raised to communicate the simulation script.

Figure 34 – Instruction breakdown for used workload

Source code for this workload can be found in Appendix B.
The compiler used is standard sparc-elf-4.4.2 toolchain. The following
flags have been used on compilation and linking:

CFLAGS=-msoft-float -Wall -O0

LDFLAGS=-qsvt -qnoambapp -lsmall
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4.3 DETECTION AND RECOVERY CAPABILITY ANALYSIS

Results from the simulation were analyzed and compiled accord-
ing to Section 4.1. This section presents a comparative analysis of the
four variations of the LEON3 processor using the workload mentioned
above.

Fig. 35 presents the detection analysis for the three architec-
tures used in the experiment with the inclusion of the LEON3 original
(unmodified) configuration. The Y axis on the left shows the total of
executions in the simulation ran, and on the right Y axis the percent-
age of these figures. Note that for the original configuration there is
no detection available. Therefore only the Correct/Failure results are
presented.

For the architectures of the TMR and the DMR, the correct rate
were similar, in the order of 79% on average, which means that the
fault is either latent, or not detected. The failure rate of the original is
slightly lower than the detected figures in the TMR and DMR approaches.
This is due to a detected error not always becoming a failure.

Interestingly the time redundant approach shows the higher
percentage of corrected results (in the order of 95% on average). This is
due to the re-execution of the code slice since the injected fault can be
overwritten before it manifests itself during the program execution.

The error classified as failure appears on LEON3 original and
time redundant implementations. After a closer look into the simulation
results, it is possible to note that some signals have an immediate effect
on processor execution. For instance, internal signals of the pipeline stage
EX→nerror and ALU→Ticc, are responsible for the general processor
error and Trap interruption control, respectively. These signals can
cause a failure every time they suffer a simulation SEU. Still, the time
redundant presents an improvement over the original implementation
for this type of error.
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Figure 35 – Detection analysis comparison of different LEON3 architec-
tures
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Fig. 36 shows an analysis for the recovery process on the de-
tected errors for the time redundant and DMR approaches. Note that
these charts are based on the absolute number of errors detected, conse-
quently the breakdown of the values are presented on stacked percent-
ages, so it would be possible to compare both techniques. The TMR is
not shown since it has 100% correction for single faults. However, TMR

would have to, somehow, recover the faulty processor, otherwise, the
error gets accumulated on the system. The original configuration is not
presented once there are no detection/correction mechanisms.

Figure 36 – Recovery analysis for the DMR and Time Redundant ap-
proaches
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For the time redundancy approach, the average errors that
were corrected, is near the 98% mark, while the average for the DMR is
a little over 63%. The main problem with the DMR, for our tests, is to
recovery both processors correctly.

The overall performance comparison for the DMR and time
redundant approaches is depicted in Fig. 37. These charts present the
total percentage of executions, for each program, which finished with
success, including those detected and corrected.

Figure 37 – Overall comparison of LEON3 DMR and time redundant
approaches
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The averages of correctness are 92% and 95% for DMR and time
redundant approaches, respectively. For the time redundant, the average
5% of failures could be further mitigated due to the signal sensibility of
the LEON3. This topic is discussed on Chapter 5.

4.4 EXECUTION OVERHEAD ANALYSIS

Although the CR technique presents a competitive recovery
capability, it introduces time overhead on the program execution. When-
ever a recovery is made, the execution needs to be halted for, at least,
one clock cycle, allowing the recovery of the IU pipeline registers and an
additional clock cycle for each register in the register file used since the
last safe checkpoint. Table 3 presents the increase percentage on the
workload execution against the original implementation of the LEON3
processor.

Table 3 – Execution time overhead against baseline

LEON3
Flow Control

LEON3
Time Redundant

Program Correct Recovered Correct Recovered
basic 0.00% 4.39% 112.88% 113.61%
bsort 0.00% 0.25% 104.90% 105.00%
nmea 0.00% 1.09% 104.90% 105.12%
hamming 0.00% 1.07% 106.71% 106.99%
Average 0.00% 1.70% 107.35% 107.68%

Each implementation of the LEON3 has different time overhead
on the execution. The LEON3 DMR does not add time to perform the
checkpoints since the checkpoint procedure is done in parallel. Therefore,
no overhead is noticed when there are no errors detected on the execution.
Although, once an error is detected, the recovery procedure takes a few
clock cycles to occur, hence the average value of 1.70% of time increase
against the baseline execution.

The cost of executing twice each slice of code out-stands on
the LEON3 time redundant approach. On average it adds 107.35% for
correct execution and 107.68% when the error is detected.
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The impact of the time redundant approach can be isolated
to analyze how long it takes to perform a rollback (recovery process).
Table 4 presents the simulation time that the CR hardware needs to act
on the system and its mean occupation of the stack of the register file.
In our simulation, the clock cycle was configured to 25ns and the stack
has 64 positions (Section 3.6). Each rollback process takes, on average,
17 clock cycles to finish and rewrite seven registers on the register file.

Table 4 – Recovery impact on time redundant approach

Program Simulation
Time (avg - ns)

Clock
Cycles

Stack
Usage (avg)

basic 456 18.24 8
bsort 474 18.96 8
nmea 405 16.2 7
hamming 400 16 7
Average 433.75 17.35 7.5

4.5 CACHE INFLUENCE ANALYSIS

Since we have disabled instruction and data caches, it is possible
to analyze the time overhead due to this decision. Table 5 presents the
simulation time (in ns) and increase ratio. The time increment due to
the removal of caches and keeping the unmodified architecture has an
average of almost seven times slower than with caches. Also, without
cache and adopting the time redundant approach has an average of 14
times the original time.

It is a high price to pay in exchange for reliability. Nonetheless,
the primary goal is to have a fault-free execution instead of the fastest
possible execution.
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Table 5 – Effect of caches on execution time

Program With
cache

Without
cache Increase Without

cache + TR Increase

basic 133825 494000 3.69 1051630 7.86
bsort 601180 5064100 8.42 10376346 17.26
nmea 286770 2057875 7.18 4216682 14.70
hamming 275291 2219775 8.06 4588508 16.67

Average 6.84 Average 14.12

4.6 FPGA AREA OVERHEAD ANALYSIS

Although we have not performed the test on the FPGA hard-
ware, it would be interesting to compare how the different architectures
influence on the area occupied. To do so, we ran the design flow for a
Xilinx FPGA (Spartan-3 1500, model xc3s1500-4-fg456). The simulation
was made using the Xilinx FPGA since the LEON3’s GRLIB does not
provide models for simulation of the main memory for the Microsemi
ProASIC3e. Nonetheless, all modifications were made inside the LEON3
core architecture. Hence no difference should be found when synthesized
to the Microsemi device.

Table 6 shows the total of the main device resources used for the
different architectures compared to the baseline (no modifications) and
also the available resources on the FPGA. For all resources presented,
the lower overhead obtained can be noticed on the time redundant
variant. Indeed it was expected since no processor replication was made.
Respectively, the DMR and TMR have higher occupation rates when
compared with the time redundant approach. The TMR approach can be
fit on this FPGA since it uses more Slices and LUTs than it is available
on the device.

Table 6 – Area Overhead Comparison for a Xilinx Spartan-3 1500 FPGA

Resource Type Available Baseline Time
Redundant Increase DMR Increase TMR Increase

Slices 13312 6483 8208 26.61% 9873 52.29% 13702 111.35%
4-input LUT 26624 12017 12598 4.83% 18424 53.32% 25836 115.00%
BRAM 32 6 7 16.67% 10 66.67% 14 133.33%
MULT18x18 32 4 4 0.00% 8 100.00% 12 200.00%
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The Time-Redundant version has a significant increase in Slices
due to logic implementation, but it is the most abundant resource on
the FPGAs. Nonetheless, when coupled with the results of time overhead,
this technique presents a competitive approach when compared to the
DMR and TMR versions. Moreover, the spare logic on the FPGA could be
used to implement other functions or improve even further the technique
by protecting more elements on the processor.

Additionally, all implementations went through the synthesis
tool on the Microsemi design flow. At this stage, preliminary results can
be obtained for the target FPGA. The data from Core (VersaTiles) and
RAM for a Microsemi ProASIC3E-1500 FPGA are presented in Table 7
along with the increase percentages for each variation. Since no opti-
mizations were made, the area increase is different than those presented
for the Spartan-3 FPGA when compared to the baseline implementation.

Table 7 – Area Overhead Comparison for a Microsemi ProASIC3E-1500
FPGA

Resource Type Available Baseline Time
Redundant Increase DMR Increase TMR Increase

Core 38400 15599 30147 93.26% 41852 168.30% 52243 234.91%
RAM/FIFO 60 52 54 3.85% 60 15.38% 68 30.77%

Once again, the TMR could not be implemented on this device.
The same goes for the DMR approach, which cannot be fit in the device
at the current stage of the design.

It is possible to note that both results of area match the order
of footprint increase. The lower is the time redundant, followed by the
DMR and lastly the TMR. This confirms the consequence of replicating
the processor unit inside the SoC.

4.7 FPGA POWER ANALYSIS

Another critical figure when designing space applications is
power consumption. Microsemi offers a spreadsheet (Microsemi Inc.,
2018) that can estimate power consumption of its devices on very early
stages of development. At synthesis, it is possible to use the quantities
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of VersaTiles and RAM used, along with the operating frequency of the
system to estimate dynamic and static power.

Table 8 shows the power consumption estimation results for a
ProASIC3E-3000 FPGA. The following configurations were used on the
power estimation tool:

• Device: A3PE3000
• Range: Commercial
• Condition: Typical
• Mode: Active

The decision to estimate values on a larger device was based on
the spreadsheet limitations. The calculator spreadsheet does not allow
to enter with a number higher of Cores/RAMs than the available on the
chosen device. Since this is an estimation for comparison, the differences
on the dynamic power figures6 are negligible. The major difference is
the static power, which is the amount of power that the device consume
independently of the implemented circuit on the FPGA. For the -1500
variant this value is 18mW for the same settings.

Table 8 – Power Consumption Comparison for a Microsemi ProASIC3E-
3000 FPGA

Power Source Original Time Redundant DMR TMR
Dynamic Power (mW) 39.58 72.94 100.12 124.44
Static Power (mW) 37.5 37.5 37.5 37.5

Total (mW) 77.08 110.44 137.62 161.94
Total increase (%) - 43% 78% 110%

The time redundant approach shows the lower increase in
power consumption, followed by the DMR and TMR approaches. Since
the redundant processors are fed with the main clock source, their
dynamic power are proportional to the occupied resources of the FPGA.

On a more practical example, a 1,000mAh/1.5V battery have a
1500mWh capacity. If we consider this capacity as the main power source

6 Experimenting on the spreadsheet, less than 0.5mW difference on the dynamic
power was noticed for the 1500 and 3000 device.
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and ignoring losses, we can calculate the runtime using the Equation 4.1.

Runtime(h) = Capacity(mWh)/PowerConsumed(mW ) (4.1)

In this case, the theoretical runtime are:

• Original: ∼19.4 hours
• Time Redundant: ∼13.5 hours
• DMR: ∼10.9 hours
• TMR: ∼9.2 hours

4.8 CHAPTER REMARKS

This chapter presented experimental results for the CR tech-
nique applied to the LEON3 soft-core processor. The proposed technique
was evaluated against the major FT techniques, namely DMR and TMR.

Our simulation results show that the time redundant based on
CR have lower overhead on area and power while sustaining reasonable
numbers on the detection and recovery process. The major drawback is
time overhead due to its nature of re-execution of code slices.

As a final comparison, in order to obtain a more solid number,
we use an adapted formula from (ARGYRIDES; PRADHAN; KOCAK,
2011) and (CASTRO et al., 2016), to get a metric on the technique
total cost. The total cost formula is presented in Equation 4.2. The
calculated total cost is dimensionless once it represents a relationship
between proportions.

TotalCost = DetectionRate ∗ RecoveryRate ∗ RunT ime
T imeOverhead ∗ AreaOverhead (4.2)

Table 9 shows the results of the total cost for the three imple-
mented techniques for a Microsemi ProASIC3E-3000 FPGA. Values used
in detection/correction rates and overheads columns are percentages
(i.e., 1.00 means 100%) compared to the original implementation.

These figures show us that the time redundancy is in between
the DMR and TMR technique. Although, the time redundancy approach
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Table 9 – Total cost analysis for Microsemi ProASIC3E-3000 FPGA

Approach Detection
Rate

Recovery
Rate Runtime Overhead Total CostTime Area

Time Redundant 0.95 0.98 0.70 2.07 1.93 0.16
DMR+CR 1.00 0.92 0.56 1.01 2.68 0.19
TMR 1.00 1.00 0.48 1.00 3.35 0.14

have a better Detection ∗ Recovery factor, 0.93 against 0.92 for the
DMR+CR.

Regarding the TMR technique, its major drawback is Runtime
Area

factor. Even though it has 100% detection and recovery rates, without
time overhead, the spatial redundancy compromise it’s application for
low-power applications.
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5 IMPROVING MICROPROCESSOR RELIABILITY

In order to obtain full microprocessor reliability, some of the
drawbacks mentioned above on the implementation should be addressed.
In this work, there are two main issues that can be resolved with on-
going work of which this author has been participating. Additionally,
the adoption of a SRAM FPGA for the based hardware is discussed.

5.1 MICROPROCESSOR CRITICAL SIGNALS

The work in (TRAVESSINI et al., 2018) presents an analysis of
the results of a fault injection campaign targeting the LEON3 processor
core, which comprises both the pipeline execution unit and the cache
controllers. The study investigates the effects of the injected faults, and
how they manifest in the processor interfaces with other modules such
as the caches, main memory, and register file. Fig. 38 shows the major
registers that caused errors in the entire LEON3 SoC.

The LEON3 most vulnerable registers have been protected with
a partial TMR technique. The results of the fault injection campaign
are presented in Fig. 39. The no effect and latent faults account for
approximate 99.25% executions. Synthesis results show an increase of
around six percent on area for the FPGA implementation.

For processor critical signals, mentioned in Section 4.3, this
approach can be easily integrated to the time redundant LEON3. This
process is expected to significantly improve the mitigation of failures
not detected by the CR technique.
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Source: (TRAVESSINI et al., 2018)
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Figure 39 – Protected LEON3 overall performance
Source: (TRAVESSINI et al., 2018)

5.2 REGISTER-FILE RELIABILITY

Since the time redundant technique reads data from the reg-
ister file to form the checkpoint, once the register file is affected, the
checkpoint can be compromised as well. For that matter, the work in
(GOERL et al., 2018) presents an approach to detect and correct MBU

occurrence in memory arrays. The EDAC technique is based on spatial
redundancy allied to a simple parity scheme per byte to guarantee
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memory reliability, namely Parity per Byte and Duplication (PBD).
Fig. 40 presents the block diagram of the proposed EDAC approach.

Figure 40 – PBD block diagram
Source: (GOERL et al., 2018)

The obtained results demonstrated the effectiveness of the
proposed approach to detect and correct errors in memory systems,
either running in a stand-alone mode or connected to the register file of
the LEON3 soft-core processor. This approach has the advantage that
it can be used either in the register file or the main memory. Though it
has a high footprint, EDAC techniques with this level of reliability are
not far from this implementation.

5.3 SRAM FPGA CONSIDERATIONS

When using SRAM FPGAs for space applications, additionally
to the user configuration (i.e., implemented hardware), the configuration
memory can also suffer from SEUs. Unwanted modification of configu-
ration memory bits can compromise the entire system. A well-known
and established technique to mitigate this problem is with the use
of a memory scrubber (BERG et al., 2008). Xilinx provides an IP to
implement scrubbing on configuration memory of their FPGAs, being
a practical solution to integrate into the system. It is also possible to
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perform configuration memory scrubbing via JTAG interface from an
external device.

However, the scrubbing process implies on halting the system
for a period of time. Usually, the scrub process is done using the Partial
Reconfiguration (PR) feature available on SRAM FPGAs. PR allows to
read and write to a portion of configuration memory inside the FPGA.
The works in (KELLER; WIRTHLIN, 2017) and (LINDOSO et al.,
2017) presents solutions based on out-of-the-box scrubbing techniques.

Additionally, the configuration memory can suffer from perma-
nent faults. Permanent faults are critical and can occur due to radiation
effects in the device as a function of TID and TID-Imprinted Effect (BEN-
FICA et al., 2016). Note that permanent faults on memory elements
are not destructive to the FPGA and therefore can be isolated and/or
reallocated.

Accordingly, once the PR feature is available, the developed work
in (MARTINS et al., 2018) presents a technique to mitigate permanent
faults on SRAM FPGAs. If the permanent fault is not destructive, there
is a high probability that it affects only its location inside the FPGA. To
deal with the faulty region, the work proposes a modified design flow,
based on Reconfigurable Partitions (RPs) with the same interface, using
a set of design rules to maintain compatibility. Whenever a permanent
fault is detected inside a RP, it can be switched to another RP (if
available) free of permanent faults. Fig. 41 shows an overview of the
RPs compatibility scheme needed to perform the swap.
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6 CONCLUSIONS AND FUTURE WORK

In this thesis, we presented a fault-tolerant architecture using
the checkpoint recovery technique for soft-core processors aimed at
space-applications using FPGAs. The related work on the area shows
there is room for improvement on time-redundancy FT techniques.

From our design premises, we picked the LEON3 soft-core
processor as the test vehicle. The LEON3 is already used on space
missions with its paid fault-tolerant version (LEON3FT - (Aeroflex
Gaisler, 2015c)).

We named this technique as LEON3 Checkpoint Recovery
Fault-Tolerant (LEON3CReFT). All modifications made to the GR-
LIB (Aeroflex Gaisler, 2015a) are available under this link7, as required
by the GPL-3.0.

The fault injection campaign was described in detail and the
results for three different architectures were compared for a set of
programs.

From our experimental results, it was shown that the CR tech-
nique is a valid alternative to TMR and even DMR. This conclusion
is valid also for the limited logic area and power budget, subjects of
interest in satellites. The constraints are allied to comparable levels of
reliability. In our approach, there is no need to perform modifications
to the software source code or compiler.

Some of the minor shortcomings of the presented technique can
be easily addressed with on-going works, to improve the reliability of
the microprocessor to a space-grade level.

As for future works, the designed system must be validate with
a faster fault-injection mechanism, such as FTUNSHADES (GUZMAN-
MIRANDA; AGUIRRE; TOMBS, 2009; MOGOLLON et al., 2011).
Also, we aim to perform analysis of SEU-susceptibility for combined
effects of EMI and TID as a continuation of the work in (VILLA et al.,
2017). Fig. 42 shows the test setup of Pelletron Accelerator (MEDINA et
al., 2014) in USP/Brazil with the Device Under Test (DUT) Microsemi
7 https://github.com/prcvilla/leon3creft

https://github.com/prcvilla/leon3creft
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ProASIC3e-1500 FPGA used for heavy-ion experimentation. For the
X-ray TID, Fig. 43 presents the setup used for the same DUT on FEI
University.

Figure 42 – Heavy-Ion test chamber in Pelletron Accelerator facilities

Figure 43 – X-ray test in FEI university facilities
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APPENDIX B – WORKLOAD SOURCE CODE

B.1 BASIC

#include <stdio.h>
#include "gpio.h"

#define CALC 6
#define FIN 7
#define ERR 8

volatile int x,a=9,b=8,c=4,d=5,i=0;

int main(){
GPIO_SET_OUTPUTS;
GPIO_WRITE(0x0);
while( i<IRUNS){

GPIO_SETPIN(CALC);
x=(a+b)−(c+d);
if (x!=8){GPIO_SETPIN(ERR);}
GPIO_WRITE(0x0);
i++;

}
GPIO_SETPIN(FIN);
return 0;

}

B.2 BSORT

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#ifndef BUBBLESORT_H
#define BUBBLESORT_H

int checkarr(uint8_t ∗);

void fillArray (uint8_t ∗);

void bubblesort (uint8_t∗ arr );

#endif
#include "bubblesort .h"

int checkarr(uint8_t ∗arr){
int i ;
for ( i=0;i<BSIZE−1;i++){

if ( arr [ i ] > arr[ i+1]) return −1;
}
return 0;

}

void fillArray (uint8_t ∗arr){
int i=0;
for ( i=0;i<BSIZE;i++){

//~ arr [ i ] = (uint8_t)(rand()%255);
arr [ i ] = (uint8_t)(9−i);

}
}
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void bubblesort (uint8_t∗ arr){
int swapped = 1, x, y, index2;
uint8_t tmp;
for (x = 0; (x < BSIZE) && swapped; x++) {

swapped = 0;
for (y = 0; y < BSIZE − x − 1; y++) {

index2 = y + 1;
if ( arr [y] > arr[ index2 ]) {

tmp = arr[y ];
arr [y] = arr[ index2 ];
arr [ index2] = tmp;
swapped = 1;

}
}

}
}

#include <stdio.h>
#include "gpio.h"
#include "bubblesort .h"

#define CALC 6
#define FIN 7
#define ERR 8

volatile int i=0;
uint8_t bsArray0[BSIZE];

int main(){
GPIO_SET_OUTPUTS;
GPIO_WRITE(0x0);
while( i<IRUNS){

GPIO_SETPIN(CALC);

fillArray (bsArray0);
bubblesort (bsArray0);

if (checkarr(bsArray0)!=0){
GPIO_SETPIN(ERR);

}

GPIO_WRITE(0x0);
i++;

}
GPIO_SETPIN(FIN);
return 0;

}

B.3 NMEA

#include <stdio.h>
#include "gpio.h"

#define CALC 6
#define FIN 7
#define ERR 8

int checksum(const char∗);

int checksum(const char ∗s) {



B.4. hamming 117

int c = 0;

while(∗s)
c ^= ∗s++;

return c;
}

volatile int i=0;
//correct checksum = 0x76 = 118 decimal
const char ∗nmeamsg = "GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,";

int main(void) {
int chks;
GPIO_SET_OUTPUTS;
GPIO_WRITE(0x0);

while( i<IRUNS){
GPIO_SETPIN(CALC);
chks=checksum(nmeamsg);

if (chks!=118) {
GPIO_SETPIN(ERR);

}

GPIO_WRITE(0x0);
i++;

}
GPIO_SETPIN(FIN);
return 0;

}

B.4 HAMMING

#include <stdio.h>
#include "gpio.h"

#define CALC 6
#define FIN 7
#define ERR 8

/∗Code Generator Matrix∗/
const unsigned char G [7][4] = {

{1,1,0,1},
{1,0,1,1},
{1,0,0,0},
{0,1,1,1},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1}

};

/∗Data to be transmitted∗/
const unsigned char data [4] = {1,0,1,0};

/∗Encoded msg∗/
unsigned char msg[7] = {0,0,0,0,0,0,0};

/∗Verify∗/
unsigned char verify [7] = {1,0,1,1,0,1,0};
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void encode(unsigned char∗,const unsigned char∗);

void encode(unsigned char ∗encoded, const unsigned char ∗dt){
int _i,_j;
for (_i=0;_i<7;_i++){

for (_j=0;_j<4;_j++){
encoded[_i] += G[_i][_j] & dt[_j ]; /∗ it is possible to either AND it or multiply∗/

}
encoded[_i]&=1;

}
}

volatile int i=0;

int main(void){
int x, error=0;
GPIO_SET_OUTPUTS;
GPIO_WRITE(0x0);

while( i<IRUNS) {
GPIO_SETPIN(CALC);
encode(msg,data);

for (x=0;x<7;x++){
if (msg[x]!=verify [x ]) error=1;

}
if ( error ) {

GPIO_SETPIN(ERR);
}

for (x=0;x<7;x++) msg[x]=0; //msg initial state
error=0;
GPIO_WRITE(0x0);
i++;

}
GPIO_SETPIN(FIN);
return 0;

}

B.5 GPIO.H

#include <stdio.h>
#include <stdint.h>

#ifndef __GPIO_H__
#define __GPIO_H__

#define GPIO_IN ∗((volatile unsigned int ∗)0x80000800)
#define GPIO_OUT ∗((volatile unsigned int ∗)0x80000804)
#define GPIO_DIR ∗((volatile unsigned int ∗)0x80000808)

#define GPIO_SET_OUTPUTS GPIO_DIR=0xffffffff
#define GPIO_WRITE(_v) GPIO_OUT=_v
#define GPIO_SETPIN(_p) GPIO_OUT|=(1<<_p)
#define GPIO_CLEARPIN(_p) GPIO_OUT&=~(1<<_p)
#define GPIO_READ (int32_t)GPIO_IN

#endif
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